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Introduction and Summary.

1. In this work the theory of scattering and emission of light 
by an atom is developed on the basis of Kramers’ method of 
quantizing the classical theory of the electron.1,2 Accordingly, the 
calculations are non-relativistic and we shall confine ourselves 
throughout to electric dipole radiation. These restrictions will 
allow us to avoid all divergences.

Scattering will be described by means of stationary states of the 
compound system of atom and electromagnetic field, which bear 
.a close analogy to the customary classical treatment. To empha
size this analogy the properties of each state are interpreted in 
terms of a classical radiation field. Emission is described by super
posing these stationary slates in such a way that initially the 
radiation field vanishes.

The scattering is calculated for incoming light with arbitrary 
frequency, either in resonance with an absorption line or not. In 
the latter case the result is equivalent to the well-known Kramers- 
Heisenberg formula. In the case of resonance—usually called 
resonance fluorescence—not only the usual line shape is found, 
but also a small line shift, which in the current treatment is in
finite and has to be discarded. The behaviour of the Raman scat
tering inside the line width and the transition to non-resonance 
are also investigated.

2. Kramers’ theory starts from the idea that in the classical 
electron theory all physically significant results depend only on 
the mass m and the charge e of the electron, and do not contain 
any reference to the structure of the electron. His program was 
to construct a structure-independent Hamiltonian that describes 
the actual behaviour with the best obtainable approximation. For 
this purpose the transverse electromagnetic field is decomposed 
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into a “proper field” and an “external field.” The former is de
fined as the non-retarded field, i. e. the field that follows from the 
Biot-Savart rule.3 It is determined by the instantaneous position 
and velocity of the electron (in contrast with the sum of retarded 
and advanced fields used by Dirac4). The vector potential A' 
of the remaining external field is finite for a point-electron, so 
that the average of A' over the extended electron will be nearly 
independent of the charge distribution. If now the equations of 
motion of the electron are expressed in terms of A', the effect 
of the proper field being accounted for by an electromagnetic 
mass n?el, they contain only the total or “experimental” mass 
m = in0 + mel; they do not depend on the structure, except for 
the very small wave lengths in A'. The equation for the external 
field A', however, still contains the proper field in such a way 
that the formalism is only approximately structure-independent.

3. In chapter I we obtain in dipole approximation a Hamil
tonian which is correct in all powers of e, in the following way.
In the ordinary Hamiltonian the field is expanded in multi
pole waves and only the electric dipole waves are retained. By 
means of a canonical transformation this simplified Hamiltonian 
is cast into a form which only contains the constants in and e 
and is practically structure-independent. This new form will be 
the starting point of our calculations. We shall call it Kramers’ 
Hamiltonian, although it differs slightly from the form he used.

If there is no binding force, this new Hamiltonian appears as 
the sum of an infinite number of oscillators, each referring to an

The next step consists of writing these equations in Hamil
tonian form. First1 Kramers used a Hamiltonian which had 
practically the same form as the usual one, but with the external 
field instead of the total field, and with the experimental mass m 
instead of the mechanical mass m0. He showed that it describes 
the secular effects correctly to the first order of e, whereas certain 
high-frequency vibrations, caused by the interaction, are neg
lected. Later, Opechowski5 found a Hamiltonian which is correct 
in dipole approximation to the first order of e. Finally Kramers2 
constructed in dipole approximation a Hamiltonian which is cor
rect also to higher orders of e, and can therefore be applied to 
the scattering of light.
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eigenvibration of the compound system. Hence the canonical 
transformation amounts to choosing the solutions for the free 
electron as basic elements. If the electron is harmonically bound, 
a further canonical transformation can be found which again 
transforms the Hamiltonian to normal modes, so that also in this 
case the rigorous solutions can be obtained. This is performed 
in chapter II, and some results are derived which are of later use.

If the binding force is of a more general character (ch. III), 
such a further transformation cannot be found, and one has to 
resort to perturbation theory. With the aid of the above mentioned 
solution of the free electron, however, the zeroth-order approxima
tion can be chosen in such a way that the interaction of electron 
and radiation field is already partly included, namely as if the 
electron were free. The perturbation consists of the influence of 
the binding on the interaction, and will be small for the high- 
frequency quanta. Indeed, the shift of the energy levels caused 
by the perturbation now turns out to be finite and small. This 
has only a restricted physical significance, because the conver
gence becomes effective at energies for which relativistic effects 
should not be neglected. Mathematically, however, it seems that 
there are no longer fundamental obstacles in solving the Schrô
dinger equation by perturbation theory and obtaining physically 
significant results for the scattering of visible light.

4. In order to describe the scattering process we construct 
a stationary solution of the Schrôdinger equation, satisfying 
the boundary condition that the ingoing radiation shall consist 
of a monochromatic wave. This solution will then also contain 
an outgoing wave of the same wave length, and the phase dif
ference between both has to be found from the Schrôdinger 
equation. This phase shift contains all relevant information about 
the physical quantities describing the scattering; indeed it is the 
counterpart for light waves of the phase matrix in Heisenberg’s 
theory of the S-matrix.

The above solution may also contain outgoing waves of dif
ferent wave lengths, namely Raman radiation. The intensities of 
the separate Raman lines follow, of course, from the coefficients 
of this solution, but these coefficients need not be computed ex
plicitly. It appears that the Raman radiation is associated with 
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imaginary terms in the phase shift mentioned above, so that the 
probability for Raman scattering can be calculated directly from 
this phase shift.

Non-stationary solutions of the Schrôdinger equation can be 
obtained by superposing the stationary solutions. If the super
position is chosen in such a way that at 1 = 0 the radiation 
field vanishes, then the field that appears at t > 0 can only be 
due to emission by the atom. Hence, such a non-stationary state 
serves to describe spontaneous emission. Again the phase shift 
(as a function of the incoming frequency) is sufficient to find 
all data about the emission process. The scattering by an atom 
in an excited state also requires a non-stationary solution, but 
this problem is not treated in the present work.

The properties of the ingoing and outgoing electromagnetic 
radiation fields have, of course, to be interpreted by computing 
expectation values of certain field operators, for instance the 
square of the field strength. However, it is possible to represent 
all relevant features of the quantum-mechanical field by a classical 
analogue. This classical field is constructed in such a way that 
the (classical) time average of any relevant quantity is equal to 
the expectation value of the same quantity in the quantum
mechanical state.

5. With the method outlined above, the scattering by an atom 
in the ground state is calculated (chs. III and IV) for the case of 
non-resonance, i. e. for incoming frequencies that are not near 
to an absorption frequency. The result is expressed in terms of 
the phase shift, but it can be checked to be equivalent to the 
Kramers-Heisenberg formula. The expression for the phase shift 
contains real terms of order e2, describing the Rayleigh scattering, 
and imaginary terms of order e4, associated with the Raman 
radiation.

Chapter V is devoted to the case of resonance. Adopting tem
porarily some simplifying assumptions, the phase shift is calcul
ated for incoming waves with frequencies in the neighbourhood 
of an absorption frequency. Just as in the classical treatment, 
the phase shift strongly increases inside the line width, passes 
through the value tc/2 in the centre of the line and finally, on 
the other side of the line, differs from the value n by a small
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amount of order e2. However, the centre of the line does not

6. One feature of the transformation that served to eliminate 
the electron structure has still to be mentioned. If the electron is 
chosen very small, and a fortiori in the limit of a point-electron, 
the new Hamiltonian contains one oscillator with an imaginary
frequency. This corresponds to the well-known self-accelerating 
solution of the classical electron8. As emphasized by Bhabha9, 
this solution of the equations of motion cannot be found by a 
perturbation calculation based on an expansion in e, because it 
is not analytic in e — 0.

As there is no proper way to quantize an oscillator with 
imaginary frequency, the transformed Hamiltonian cannot be 
carried over to quantum mechanics. Of course, even in classical 
theory the self-accelerating motion makes a rigorous solution of 
the equations of motion meaningless. A plausible procedure, 
however, consists of discarding the anomalous oscillator from the
Hamiltonian; it will be shown that this leads to agreement with 
experimental results. It is important that no radiation is associated 
with this oscillator.

exactly coincide with the atomic frequency, but shows a small 
line shift. With the ordinary Hamiltonian this so-called Lamb- 
Retherford shift6 could only be computed by means of an ad hoc 
prescription for the subtraction of infinite terms.7

Inside the line width the Raman lines are very strong and their 
intensities are proportional to those of the corresponding emission 
lines. Therefore the scattering process may be visualized as the 
absorption of an incoming photon and subsequent spontaneous 
emission. This picture is, however, only partly true, because
several details are not represented correctly.

In chapter VI the resonance and non
resonance are combined into one formula for the phase shift, 
which holds for all values of the incoming frequency and for 
any binding force. This equation shows that the transition be
tween resonance and non-resonance is rather involved. The simple 
device of inserting imaginary damping terms in the resonance 
denominators of the Kramers-Heisenberg formula has only a 
restricted validity.
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Chapter I. Derivation of the Hamiltonian.

7. In this chapter Kramers’ Hamiltonian is deduced from the 
usual one in the following way. In the non-relativistic Hamilton
ian for an extended electron the transverse field is expanded in 
electric dipole waves, all other multipole waves being omitted. 
By means of a first canonical transformation the proper field of 
the electron is separated from the total field, so that only the ex
ternal field occurs in the new Hamiltonian. By a second canonical 
transformation the remaining A2 term is incorporated in the oscil
lators of the field.

8. After elimination of the longitudinal field the remaining
transverse field can be described by a vector potential A with
div A = 0. The Hamiltonian of the system electron + field then 
takes the form8 * 10

The Hamiltonian thus obtained is, in dipole approximation, 
equivalent to the Hamiltonian given by Kramers. The electron 
is characterized only by the charge e and the experimental mass 
m; the details of the structure have, for all practical purposes, 
been eliminated. Therefore one may take a simple model, and 
we shall choose a point-electron in order to get manageable 
formulae.

The formalism of the deduction is adapted to both classical 
theory and quantum mechanics.

(1)

where —E/4?r is the canonical conjugate of A.

R and P are the position and the momentum of the electron, e and m0 
its charge and mechanical mass. The function q will describe the charge 
distribution, so that \(>dr = e. We shall put c = /i = 1 throughout 
this work. A and E are the vector potential and the field strength of 
the transverse electromagnetic field, V is the static potential resulting 
from the elimination of the longitudinal field. For the sake of simplicity 
we do not consider an external magnetic field, although it will be im
portant in certain experiments. How it can be taken into account has 
been indicated by Kramers1.
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The symbol * denotes the mean value over the extended 
electron, i. e.

eA = $ A(r)e(|r— R|)dr = $ A(R + r) e(| r|) dr.

If the motion of the electron is confined to a region around the 
origin that is small compared to the wave lengths present in the 
external field11, then this mean value is practically independent 
of the position 11 of the electron, so that one may write

eA = $A(r)e(|r|)dr. (2)

This condition is certainly fulfilled when dealing with the scat
tering of visible light by atoms. Physically it amounts to neglecting 
the transport of (canonical) momentum from the transverse field 
to the electron; indeed from (1) and (2) follows

i» = _^/oR = _VV(R). (3)

When A is expanded in multipole waves, the result of this ap
proximation is that only the electric dipole waves are coupled with 
the electron: all other multipole waves are zero in the origin and 
hence do not contribute to (2) if o falls off rapidly.

9. As far as electric dipole radiation is concerned the expansion 
of the field inside a large sphere of radius L may be written

There are three directions of polarization corresponding to the three 
components of qn. 2 means “transverse part of” and may be defined by12

~ sinrnr f 1 z 1 sinr,.r z_x= {<ln + ^(<lnV)V}_¿r5-. (5)

2It gives rise to a factor in the mean values over the electron, because 
for small r

2qn(sin vnr)/r = | qnvn + Or;

and also in the normalization, because

j¡<ln(sin rnr)/rl dr = J/qn(sin vnr)/rl -4nr*dr.
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The orthogonal functions in the expansion (4) have the norm 
|/4tï; consequently, if E is similarly expanded:

_B(í) = ÍEr|/3,„í^, (6)
then pn is canonically conjugate to qn. From (4) follows further
more

eA = |/4/3Z, 2?q,t J sin vnr-^(r)-4jrrdr =Ze„qn, (7) 

where
£n = <5nvn^4e2/3L,

2 ~ ^nn' Qn Qn' y A {J’n ^nn' ( 1 l^o) £n ^n'/ Qn Qn' » (11)

ôn being a convergence factor which depends on the structure q 
of the electron and tends to 1 for a point-electron. Substituting 
(4), (6) and (7) in the Hamiltonian (1), one gets

§ = (l/2m0)P2 + V(R)-(l/m0)P2?£nqn

+ (1/2 ™o) (2? £nqn)2 + i 2? (p2 + v2n q2).

10. If now new variables are introduced by means of the 
canonical transformation

P„ = P,'„ q„ = q; + p'. P = P', R = R'+27;^p;, (8)

where
zn = m0 + 2?(£n/vn)2, (9)

then the Hamiltonian becomes

e = (l/2/n)F« + V{R' + Z(£n/m*p;}
+ (1/2 «>„) (JTeX)*  + (p*  + ¿ q,?). j ( 10)

The third term on the right stems from the A2 term. Together 
with the fourth term it constitutes a quadratic form in the field 
variables q,,: 
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which can be transformed to principal axes by means of an 
orthogonal transformation

Qn = rxnn.q,;, p; = <12)

This is carried out in Appendix A, sections 1 and 2, with the 
result

$ =
p'2

2 in + V R' + (13)

where kn are the roots of a certain characteristic equation and 
r¡n and Ln are defined by

Lkn = rin + ll7l, V<Vn< ;
= L — (cos??n)2/x, 1/x = 2 e2/3 m.

(14)

The structure of the electron enters into the Hamiltonian (13) 
only through the equation for the kn (namely (A 6)). It may be 
expected that its influence on the physical phenomena we are 
interested in is small. Therefore we may choose a point-electron, 
in which case the characteristic equation becomes

tan Lk = k/x or tan r] = k/x. (15)

11. For a free electron (V = 0), the Hamiltonian (13) fur
nishes the correct solution (of course in non-relativistic dipole 
approximation). The momentum P' = P is constant (as a con
sequence of the dipole approximation, cf. (3)) and IV is linear 
in t. The electron at the point R fluctuates around the uniformly 
moving point R'. If no photons are present, then classically 
R = Rz, but in quantum theory there is still a fluctuating motion, 
owing to the zero point fluctuations of the field.*  In this case the 
square of the distance R — Rz has the expectation value

* The influence of this fluctuation in the position of the electron on the 
physically measurable quantities has been studied by Welton13.

<(» - R')*>  = (2 es/3 "•’) (2 cos2 %/U*)  (i„/2). (16)

Our factor cos2 T]n gives convergence for Zc->oo, but it be
comes effective at too high values of k, owing to the neglect of 
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recoil and relativistic elïects (see also 40). There is a logarithmic 
divergence for > 0, but any binding force will cut olf the lower 
values of k and thus make the expression finite (see ref. 13). 
It may be added that fluctuations with infinite mean square 
amplitude are known in probability theory14 and that the result 
for a free electron is not unacceptable, because the mean square 
amplitude is not an observable quantity. It will be shown in 15 
that physically measurable quantities do not suffer from this infra
red divergence.

12. The physical meaning of the transformation (8) can be seen 
from the corresponding decomposition of the field: A = A'+ A°. 
Here A' is of the form (4) with q't instead of qn, and

(with the aid of (A 22)). We shall call A0 the proper field of the 
electron and A' the external field. If V'/in were the electron 
velocity, A0 would be identical with the proper field as defined 
by Kramers3. Now, however, this is only true in first approxima
tion, because P' is the canonical momentum

P'/m = R' = R+ Oe.

Owing to this difference in the field that has been split olf, (13) 
is slightly simpler than the Hamiltonian actually given by Kramers.

At first sight, Bloch and Nordsieck’s transformation15 seems 
to be rather the same as our transformation (8), but there is an 
essential difference. Since they used the unbound electron as 
zeroth approximation, they could replace with sufficient approx
imation (P-eA)*/2  m0 by V (P — eA) and consider the velocity 
vector V as a constant:

$ = v (!’ — % ß/iQn) + % (Pn + vnQn)-

Now the problem is not to transform this Hamiltonian to principal 
axes, but to get rid of the linear term in qn. This is achieved by 
the canonical transformation

Pn = Pn» Qn = <ln+(£n/2¿)V, P = P', Il = R'. 
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This transformation is much simpler than (8) since R = R'. 
On the other hand, Bloch and Nordsieck used a less trivial con
nection between P and P', because they did not coniine themselves 
to dipole approximation.

Pauli and Fierz16 supposed the electron to be so large that 
the electromagnetic mass is small compared to the mechanical 
mass. In this case, one can put in (8) m = m0 and the transforma
tion becomes identical to theirs. It is consistent with this approx
imation to omit the A2-term in the Hamiltonian, and accordingly 
they obtained the same Hamiltonian (13), but without the phase 
shifts T]n. The transition to the point-electron is, of course, ex
cluded.

13. The orthogonal transformation (12) amounts to choosing 
a new set of orthogonal functions for the expansion of A'. It is 
shown in A 4 that they are sine functions with wave number kn 
and phase shift ?/n:

A' = xxl/f (18)

Owing to his slightly different definition of the proper field, 
Kramers found as the external field belonging to a stationary 
solution of the classical free electron, instead of (18),

Aj = £ |/3/Ln q" { sin (knr — 7]n) + sin r]n }/r.

For a freely moving electron this field is finite at r = 0, in contrast 
with our “external” field (18). After having obtained these solu
tions, Kramers could write the Hamiltonian for the free electron 
simply as a sum of terms:

Welton13 used the same Hamiltonian as Pauli and Fierz, with 
a rather sketchy justification. Schwinger’s elaborate calculation 
of the self-energy17 is based on the same idea, but meets all 
requirements of relativistic invariance and does not use dipole 
approximation. On the other hand, an expansion in e is used for 
the canonical transformation and only the first power is computed. 
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each term referring to an oscillator associated with a stationary 
motion. The Hamiltonian which we obtained by means of two 
canonical transformations differs from this one only by the ad
ditional term P'2/2 m, associated with the linear motion with 
constant velocity.

It is noteworthy that after the first transformation (8) the transition 
to the point-electron is not yet possible, because the Hamiltonian (10) 
still contains m0. Since the term with m0 has usually been omitted, 
the necessity of the second transformation did not appear. The factor 
cos2^n, however, which arises from it, will turn out to be useful in 
obtaining convergence (see 40; cf. also 11).

14. When the electron is very small, the electromagnetic mass 
is larger than the experimental mass in, and consequently ni0 
is negative. Then (11) is no longer positive definite and not all 
the eigenvalues can be positive. In fact it is shown in A 2 that 
for the point-electron there is one negative eigenvalue — x2, 
yielding two imaginary solutions k*  = in and k*  = — zx of (15).

This anomalous eigenvalue gives rise in the Hamiltonian (13) 
to a term

(19)

and to a term (e/m) |/4/3x p... in the argument of V. In the ex
pansion (18) it gives a term

X |/3x n^e-x'/r-,

this is a field which is appreciable only within a distance of the 
order of the classical electron radius, and hence does not contain 
a radiation field.

If the Hamiltonian (13) is used for the classical treatment 
of the free electron, then the term (19) gives rise to two solutions 
with time factors eKt and e~xt. The former is the “self-acceler
ating” or “runaway” solution, well-known from the classical 
theory of the electron8. The latter comes in because, owing to 
the reflecting sphere, our treatment is symmetric in time. (The 
usual boundary condition that there is no ingoing radiation at 
infinity is, of course, not symmetric.)

The anomalous term (19) is not a structure-independent 
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feature, since it cannot occur if the electron is chosen so big that 
m0 is positive. It may be expected therefore to be immaterial for 
the phenomena we are interested in, just as in Lorentz’ theory, 
provided it is treated in a suitable manner. In his classical theory4 
Dirac gave the prescription that the initial situation should be 
chosen in such a way that the final velocity is finite. That means 
for our free electron that the initial p*  and q;,: must be zero, 
because otherwise they will increase exponentially. This amounts 
to simply omitting the term (19) from the Hamiltonian of the free 
electron. The initial field can then no longer be chosen completely 
arbitrarily, but must be such that in (19) q*  = 0 (and that p:!: = 0 
in the analogous expansion of E'). This restrictive condition 
affects only the field in the immediate neighbourhood of the elec
tron, whereas the radiation field can still be chosen freely. The 
resulting Hamiltonian can be quantized without difficulty.

'flic bound electron in classical theory has also a self-acceler
ating solution, but in this case Dirac’s prescription leads to dif
ficulties18. Moreover, in order to apply it to quantum theory in 
the same way as above, one has to find a canonical transformation 
by which this solution is exhibited explicitly in a term like (19). 
This is only possible for a free or a harmonically bound electron.

A slightly different way of generalizing Dirac’s prescription to 
bound electrons consists of dropping in the Hamiltonian (13) 
both the term (19) and the term with p*  in the argument of V. 
'fhe remaining Hamiltonian can be used in quantum mechanics 
and may again be expected to give right results for the scattering 
of visible light by atoms. In the next chapter we shall apply both 
the first and the second procedure to the harmonically bound 
electron, and the results will turn out to be practically identical. 
In the later chapters the second procedure will be used for the 
electron in a general field of force.

15. The Hamiltonian (13) might give rise to “infrared” diver
gences of the kind encountered in (16). We shall here show that 
they are only formal and do not prevent a consistent solution of 
the Schrödinger equation. For this purpose we use the canonical 
transformation
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where #n are arbitrary numbers, bounded for oc. The Hamil
tonian (13) takes the form

with

+ T¿ ¿'(P?. + *n«n)  |/K, COS M,.,

1 _ 1 ■ 4e2 r^2 cos2 Vn f I o 2 Tm in 3 nr Ltl

(20)

If we now choose &n = 1 for small n, there is no risk of diver
gence for Á’->0. If moreover = 0 for large n, (20) will have 
the same features as (13) in the region of large k, that means 
(as will be seen later) that there are no divergences for k^oo. 
Consequently there is no difficulty in applying perturbation theory 
to (20). Any measurable quantity, however, must be independent 
of the arbitrary numbers &n, so that one can put afterwards 
&n = 0 for all n, without introducing any divergence.

A safe, but cumbersome, way to deal with (13) is to use its 
transform (20). Instead we may use (13) directly, because in the 
final result the divergences for Á’->0 will cancel. In intermediate 
stages any divergent term may be cut oil’ temporarily at some 
low value of k.

Even with the choice i)n = 1 for all n the results are still 
finite, owing to the factor cos r/n in the last term of (20). This 
choice might seem profitable because of the resemblance of the 
resulting Hamiltonian with the customary one. However, it is 
easily seen that then in — in/2, so that half of the experimental 
mass has to be furnished by the interaction; hence we would 
get an unsuitable starting point for the application of perturbation 
theory.

Chapter II. The Harmonic Oscillator.
16. In the case of a harmonically bound electron one has

V = ~mK2ll2, and the Hamiltonian (13) reduces to a quadratic 

form
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This is a sum of three similar terms, each referring to one direc
tion in space. Therefore the problem can be reduced to a scalar 
one by writing

P' = eP', R' = eR', p" = ep", = eg",

where e is a unit vector in the x, y, or z direction.
On introducing new canonical variables Pv, Qv by

and putting

á0 = 0, d0 = 1, dn = ]/2/xLn cos r¡n,

the Hamiltonian becomes simply

$ = -’¿'(Pp + tíQ?)+ -*  /CCZripQ,)2- (21)

The subscript v takes the values 0, 1,2,... and also the “value” * 
(at least in what is called in 14 the first procedure; in the second 
procedure, considered in 18, the anomalous oscillator denoted 
by * is discarded at this point).

The Hamiltonian (21) can be transformed to principal axes 
by means of an orthogonal transformation

Qv = X YVV' Q'V', Pv = S Yw' Pv',

with the result (see A 3)

ç = ’r(p;2 + <o?o;s). (22)

The shifted frequencies mv are the roots of the characteristic 
equation

co3/x co ( K2 \= ^[l+ JÜZp) (23)

and a new phase shift £v can be defined by

Lcov = Cv + V7i, tan £v = tan Lwv. (24)
Dan.Mat.Fys.Medd. 26, no. 15. 2
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It is seen from (23), (24), that £ ri for co» K; that £ is near to 
tt/2 for co K, and £ & 7t for co « K. Hence there is resonance 
at the frequency K.

There is again one imaginary root co*  in, analogous to 2r*  
for the free electron. In the first procedure the corresponding 
term is discarded in the transformed Hamiltonian (22). The re
maining part is positive definite and can be quantized.

17. In order to investigate the aspect of the eigensolutions, 
we express the original variables in terms of Pp and Q'v. The 
position of the electron is given by (see A 3)

K = eSdpQpin 2 = em 2 XßvQ'v,

ßv _ i/2x ^sin_Çv _ e i / 4_________ Kæp
j/m i mL/v (üv mr 3Lp / (co2— Æ2)2+co®/x2

In general this factor is small of order e, but for co K it becomes 
of order 1/e.

The external field is described by

A' = -Se S Ÿ3ÎLnPn sin (V - (25)

and, with Pn = EYnvP'v, this becomes (see A 5)

A' = (26)f Lv r mr

P is the momentum of the electron and the term with P is just 
the proper field A0, according to (17). Hence the first term on 
the right represents the total field; it is an electric dipole wave 
with phase £v, whose dependence on the frequency coy is given 
by (23) and (24).

It can be understood physically that the total field reappears in 
our formula. Contrary to the free electron, the harmonically bound 
electron can only perform an oscillatory motion and no translation. 
Hence the total field must be of the type of a dipole wave, and cannot 
contain a part with 1/r. This essential difference with the free electron 
prevents a continuous transition if the binding tends to zero, i. e. if 
K -> 0. This paradox is caused, of course, by our dipole approximation.
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18. The second procedure consists of discarding the anomalous 
terms in the untransformed Hamiltonian (21) and transforming the 
remaining Hamiltonian into (22). This is carried out in A 3 and, instead 
of (23), the characteristic equation

tan C(co) = tan L co = — {1 +  2+ x’)} <27>

* With (toy) we denote a state in which one quantum is present, with fre
quency cop.

is now found. There is no complex root, because we started with a 
positive definite form, so that all eigenvalues co2 must be positive.

Again the situation may be studied, and again

R = e2?|/2xÆ2/msin Q'v,

now being determined by (27). The expression (26) can also be main
tained if a term with e* r/r is neglected. The situation therefore is es
sentially the same as in 17, the only difference being that between the 
expressions (23) and (27) for the phase C(co). This difference between 
the two values of £ is always relatively small, except in the neighbour
hood of K. Whereas (23) is infinite for co = K, (27) gives resonance for

œ = K + + x2) + Ox-4 K + K sin2 rç(K).

This shift of the resonance frequency is of order (7</x)2 (for visible light 
about 137 ’) with respect to K, which is much smaller than the natural 
line width and can therefore always be neglected.

Consequently, this second procedure is, to all intents and purposes, 
equivalent to the first one: it does not make any appreciable difference 
whether the problem is first solved rigorously and the new self-acceler
ating solution is discarded afterwards, or whether, alternatively, the 
self-accelerating solution of the free electron is discarded before the 
binding is taken into account. In this chapter we adopt the first pro
cedure, because (23) is simpler than (27). As mentioned in 14, we shall 
use the second procedure in the later chapters, because the first one 
cannot be applied to an electron in a more general field of force.

19. The investigation of the physical aspect of the solutions 
can be simplified by the following two remarks.

1°. In order to get a picture of the electromagnetic field in 
a quantum-mechanical state, it is convenient to construct a 
classical analogue19. Let V7 = £cv(wv} e,<,>vt be a quantum
mechanical superposition of one-quantum states*  The ex
pectation values of quadratic expressions in the P' and Q' are

2*
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easily calculated; one finds, for instance, after subtraction of the 
vacuum part,

Now consider a classical superposition of eigenvibrations, deter
mined by*

20. We are now in a position to investigate the physical aspect 
of the solutions. Any eigensolution, with frequency cop = co say, 
contains an ingoing and an outgoing wave and hence represents 
a stationary scattering process. According to (26) and (29), the 
incident electric dipole wave

A_(f) = NZee~iœ(r + t)/r

* Si denotes the real part.

Py(t) = ÿll/2 cohere i(°vt = l/cov/2 (cve ia)vt + c* vei(tívt). (29)

One finds for P¿ (/) Pfl (/) in this state the same expression (28), 
plus terms with frequency co¿co/t,. The same agreement holds 
for Q'âQ'/i and P}.Q'/i + Q'/t P\ and, consequently, for any quadratic 
expression in A' and E'. Hence the physical results are the same 
in both states, provided that in the classical one the high-frequency 
phenomena are omitted (e. g. by averaging over a lime which is 
long compared to the period of the waves, but short compared 
to the macroscopical changes in the situation).

2°. In problems of particle scattering the wave function has 
necessarily an infinite norm. It may be considered as referring 
to an assembly of an infinite number of particles, such that the 
particle density is finite20. In the same way we shall choose an 
infinite norm in order to get a finite incoming energy current. 
In our finite sphere this amounts to omitting in all coefficients 
the factor L 2, with the result that the ingoing field is independent 
of L. However, in the case of a perturbed state consisting of a 
superposition of the eigenstates in a certain energy interval, the 
number of these eigenstates increases proportional to L, and no 
extra power of L needs to be added.
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(whose total ingoing energy per unit time is I = co2/3) gives rise 
to an outgoing wave

A+(i) = -SSe-2*fXee‘“<r-0/r.
_ 2 i F

The phase factor e , is connected with the cross-section for 
scattering of a plane wave by a well-known formula21

3 4?r . „ . . . Gtt co4
0's ~ - -y Sin2 £(co) = ------jn-5.

2 co2 X2 (co2 —A2)2 + cob/x2

This is identical with the expression found in the classical theory 
of electrons22.

21. Emission will be described by a superposition of stationary 
states, chosen in such a way that the field vanishes at f = 0. 
This is possible because the phase-shifted functions in (26) satisfy 
an identical relation (see A 6)*,  viz.

¿’(2/LpCOp) sin Cv sin (corr—£„) = 0.

If now, classically, one takes a superposition of eigenvibrations 
(29), the coefficients cv being determined by

l/‘2covcv = 1/3/Lpmv “ sin Cv‘ C,

one finds, according to (26),

revnv 3 sin Cv sin (co„r —CO ,A(r) =—C-teZ .---------------------------cos a>vt
Lv co£ r

as the classical analogue of the radiation field. At t = 0 both 
A(/) and E(f) = —A(f) vanish, so that there is no radiation 
present. Hence the field appearing at later times (f > 0) has 
to be interpreted as emission by the oscillator.

For the outgoing energy per unit time with frequency between 
a> and co + da> one finds

(30)

* Whether the anomalous term is included in the sum or not is immaterial, 
since it decreases exponentially as e~xr.
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If L tends to infinity (with constant C), this expression vanishes. In
deed, the field describes only one act of emission between t = — oo 
and t = + oo, so that the outgoing intensity, averaged in time, must 
be zero. If L is finite, however, the emitted radiation is reflected by the 
sphere and after a time 2 L the initial situation is restored. Thus, our 
non-stationary state then describes a sequence of emissions, one per 
time interval 2L. The emitted energy with frequency between co and 
co + dco for each emission is equal to (30), multiplied by 2 L; for the 
total energy per emission one finds 3 C2/4 x. This value can be used to 
determine C, but, for convenience, we shall put C = 1 in the following.

The field for I > 0 can be calculated when the summation 
over V is replaced by an integration over co:

pQO
A(f) = —S(e/r)\ (3/rcco2) sin £(co) sin {cor— £ (co)} cos (jotdco

•'o

8 nr i I to2 co J
V— oo

In the last expression outgoing and ingoing fields appear sepa
rately. After substituting from (23), (24)

1 — e±2i^(to) 2 i co
co2 x co2 — Æ2 T i (o3/x ’

one can carry out the integration in the complex plane. The poles 
a) & ± ix give contributions e~Hr and must be neglected. The two 
other poles are (omitting higher orders of 1/x) K ± iA'2/2x and 
— Æ±z‘Æ2/2x. One thus finds that the ingoing field is zero, of 
course, and so is the outgoing field for r > t. For r < t the latter 
is, omitting terms of relative order e2,

A+ = X (3 e/2 xr) cos K (r — t) exp (Z<2/2 x) (r — f). (31)

This is the well-known expression for a damped wave with 
frequency K and half-value breadth A2/x = 2 e2A2/3 m.

22. It is useful to consider a more general formula for the 
phase shift, viz.

-ø(co). (32)
X
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This is the phase shift caused by a number of oscillators with 
frequencies K¡ and oscillator strengths f¡ = x/xy.

To each zero of ø corresponds an identical relation (A 21) 
and hence a state in which there is no radiation at t = 0. At any 
time t > 0 there is a radiation field, but it will be seen that it 
contains all frequencies K¡, so that the initial situation is one 
in which all oscillators are excited. Indeed, choosing in (29)

|/ 2 covcv = |/3/L¿sin — cop), (33)

one finds from (26) the field

(34)

The integration can again be performed in the complex plane. 
From (32) follows

1 — e±2l<* _ T2 ico/x ø
— to2 IT (zco/x) ø _Q2 — to2

and the only singularities are the zeros of 1 T (ico/x)#. Those 
with co ± zx must be neglected and the others are Kj ± ÍÁ-?/¡/2 x 
and—Kj ± ¡K- f¡/2 x. Thus one finds an outgoing field for 
r < t, viz.

-- j y 2 Z*
C0S Kj ~ eXp ~

i 1 1

This field corresponds to simultaneous emission by all the oscil
lators.

In order to describe emission by only one of the oscillators, 
one has to choose a suitable linear combination of these states. 
For this purpose we use the theory of A 1 and substitute s = co2 
and F(s) = The poles tn of F(s) are now Kf and the resi
dues are = K?f¡. The roots of the equation F(s) = 0 are 

and the normalization constants are
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ßF*  = _ F (£>z2) = 27 - Kf),

so that (A 5) becomes

Now let the states given by (33) be added, each being multiplied 
by ßi /(Pz2— A2t). In other words, we consider a new state given 
by new coefficients c, determined by

]/2mrc, = \/3/L'r sin f, 27, - /<,=) (ßf - to?).

Then the field follows from (26) and (29):

A(/) = £ (3 e/2 xr) cos Kh (r — t) exp (Kj¡fij2 x) (r — /). (35) 

This is exactly the field (31) of an oscillator with frequency Kh 
whose probability for emission is reduced by a factor fh.

It should be emphasized that these results follow from the equation 
(32) for the phase shift, and that it is immaterial whether this phase 
shift is caused by oscillators or by any other scattering centre. In fact, 
in this section we have derived the existence and properties of decaying 
excited states from the behaviour of the S-matrix, in our case defined by

S(co) = — e-2íf(co) = —
z 1+i tan C

The connection with the usual treatment23 follows from the remark 
that the poles which contribute to (34) are the zeros of 1 + (z to/x) ø 
= 1 + i tan C, and hence also the poles of S(co).

It is noteworthy that tan £, rather than the multiple valued func
tion C itself, describes the properties of the scattering centre in a simple 
way24.

Chapter III. Arbitrary Binding Force.

23. In this chapter the Hamiltonian (13) is employed to 
compute the scattering of light by an electron in a general 
field of force with potential V(R). As V is no longer a quadratic 
function in R, the Schrödinger equation cannot be solved by a 
linear canonical transformation of the variables, and perturba
tion theory becomes necessary. Accordingly, the term V in (13) 
must be expanded in powers of e and the zero-order Hamiltonian is
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i,« = P'*/2m  + V(R')+|2;(p-2 + ^q7).

Following the program outlined in 14, the anomalous term is 
omitted in the sum, so that n takes the values 1, 2, •••• This 
Hamiltonian Á?0 describes a motion of R' as if there were no 
coupling, whereas the electron at R fluctuates around R' in the 
same way as the unbound electron. The higher terms in e describe 
the effect of the binding force on the fluctuation. Since for high- 
frequency vibrations this effect will be small, the convergence 
may be expected to be better than in the usual treatment, where 
the whole interaction with the transverse electromagnetic field is 
treated as a perturbation.

24. Each of the field quanta corresponds not only to a certain 
oscillation of the field, but contains a vibratory motion of the 
electron as well*.  They are labelled by n and their polarization 
V (y = x, y, z for the three components of qn and pn). Instead of 
the pair n,v we shall often use n. Creation and annihilation 
operators are introduced by

Pnv = |/^n/2 (anv + a^v), q"w = i (anv — aJ„)/|/2 kn.

The Hamiltonian (13) then becomes, to the second order,**

£> = P'2/2 m + V(R') + 21 kn a\„ alw + 27 rn (an„ +

1 . +
2 ^n^n' (,(lnv H- anv) (an'v' 4" >

where

Tn = m K3 knLn cos Oe^‘

Let En be the eigenvalues of the operator P'2/2m + V(R'). 
The eigenfunctions will be labelled by N and an additional sub
script /Li to cover the case of degeneracy. Writing N for N,/tt we 
shall denote the eigenfunctions by ç?N(R'). The eigenstates of the 
operator 27 kna\an will be denoted by { }, {n}, (n, n'} = {n',n},« • -,

* This is the reason why we prefer not to call them photons. 
** dv denotes derivation in the direction v.

(36)
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according as there are 0, 1, 2, • • • quanta present. A state vector 
V7 of the whole system can be expanded as follows:

= 2Tcn99n{ } + ¿1eÑ9’N{n} + (l/2I)¿,CNn 9’N{n,n,}4------,
N Nn Nnn'

with c™ = c^j", etc.25 Finally, for the matrix elements of V 
we use the abbreviations

7n<N|^V|N'> = <NzwNz> = <NnN>

TnT/f<N|d„d„'V|N'> = <NnnzNz>
(= 00>
(= 0e2).

Then the Schrôdinger equation (Ö— IV) */ 7 — 0 takes the form*  

(EN —W)cN + <Nn'N'>cg.+’(Nii'n"X'/<gn'+' <Nn'n'N'>cN. = 0 (38a)

(ßN - W + Å-„) eg + <NnN'> cN. + <Nn'N'> eg!' + <Nnn'N'> eg. +
1 1 , . (38 b)+ ^<NnznzNz><& + |<NnznzzNz> c™n = 0

— W + kn + km) cn” + <NnNz> + (NmN') c^' +

+ <NnmNz> cN, + <Nn'Nz> c^n' + * <NnznzzNz> c^n'n' +

+ <NnnzNz> c^m + <Nmn'Nz> c£,n + <Nn'n'Nz> = 0.

It should be noted that an infinite constant (3/2) 27 kn has been 
dropped in (36). This is the zero-point energy of the shifted oscillators 
and differs from the usually subtracted term (3/2) 2? vn by an infinite 
amount (cf. ref. 2),

(3/2) 27 (Æn — rn) = (3/2 £) 27 rln = (3/2 n) J n(k)dk,

which represents the lion-relativistic fluctuation energy of the free elec
tron. In the usual treatment this infinite energy shift has to be furnished 
by the perturbation calculation and causes divergence. In the exact 
treatment of the harmonic oscillator in ch. II the subtracted zero-point 
energy (3/2) 27 a>v differs from that for the free electron by a finite 
amount

(3/2) 27 (mn — kn) = (3/2 n) J (k) — (/c)} dk 

= 3 K/2 + (3 K2/2 ttx) log (xfK).
(39)

♦ Summation over all primed letters is implied. Similarly in the following, 
summation over primed letters is not indicated explicitly, when no confusion 
can arise.
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The first term represents the zero-point energy of the harmonic oscil
lator, and the second term is an additional fluctuation energy. It has 
the same form as the Lamb-Retherford shift, but in this particular 
case it does not give rise to a frequency shift, because it is the same for 
all levels. In the present case of a non-harmonically bound electron, an 
analogous term must result from the perturbation calculation; as it is 
no longer the same for all levels, a frequency shift does arise.

It should also be noted that in the right-hand side of (36) a term 
occurs with a cd . Here the operators cannot be reordered with the 

iw rw
creation operators on the left, because this would amount to discarding 
a term in the Hamiltonian which is not a constant. In fact, this term 
will turn out in 39 to be essential for the cancellation of the infra-red 
divergence.

25. In the same way as in ch. II we shall describe the scat
tering process by means of a stationary scattering state. For this 
purpose an eigenfunction will be constructed, satisfying the 
boundary condition that the ingoing field at large distance shall 
consist of a monochromatic wave with given frequency co and 
given polarization iv. The outgoing field then consists of waves 
with frequencies co, œ1, co2, •••, describing the Rayleigh scat
tering and the various Raman lines.

This method of stationary scattering states has the physical 
advantage that it is a direct translation of the customary classical 
treatment. Mathematically it is simpler than the time-dependent 
method, because the latter is unduly complicated by irrelevant 
terms arising from the initial conditions for the intermediate 
states26. Moreover, it describes the time-dependence in greater 
detail than required for the actual experiments (cf. 50). On the 
other hand, the interpretation of a stationary scattering state is 
rather subtle. It should be emphasized in particular that it must 
not be visualized as a steady stream of photons, scattered by one 
atom, but as an assembly of identical systems, each containing 
one scattering center and one incoming photon20.

In the theory of particle collisions, the eigenfunction V7 is 
constructed by starting from an unperturbed wave function IP0 
which has the required ingoing waves. In order to satisfy the 
perturbed Schrôdinger equation one adds a perturbation term W 
containing outgoing waves only. This means that the ^-represen
tative of this term must have a factor

2niô+(k — co) = (k — co)-1 + inô (k — at). (40)
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This method, however, will not be suitable when the scattering 
is very large, for instance when co is in resonance with an absorp
tion frequency of the atom. To cover the case of resonance as well, 
we shall here use a different line of approach, which can be out
lined as follows.

Since the above mentioned unperturbed wave function contains 
a factor ô (k — co), the total wave function is of the form

V = y/o+ xp> = C{(k—co)~l + Àô(k-co)}. (41)

(In general C and À will be functions of the direction in space, 
but in our dipole approximation they only depend on the polariza
tion of the incoming radiation.) Our method consists of finding 
a stationary solution of the Schrôdinger equation which has this 
form (41). The total energy W can then be considered as a pre
scribed quantity, determined by the given incoming frequency co. 
The parameter Å, however, has to be found from a characteristic 
equation. The coefficients c in (38) can then easily be computed. 
It turns out that À is directly connected with the phase difference 
between the ingoing and outgoing waves, and hence with the 
physical quantities we are interested in. In the same way as in 
ch. II, it will be convenient sometimes to choose the normalization 
constant C such that )// corresponds to a given ingoing energy 
current.

On solving the Schrôdinger equation other singular terms will 
appear, of the type (k — «h)-1, (k — co2)— l, . . . , where colf co2, • • • 
are frequencies lower than co. They represent Raman lines, and, 
in order to obtain a state in which there is no ingoing radiation 
with these frequencies, they have to be supplemented with terms 
inô (k — Mi), inô (k — o>2), . . similar to (40).

The ¿-functions, of course, refer to continuous variables. It 
is shown in A 7 that our procedure follows directly from the 
discontinuous treatment, when the enclosing sphere goes to in
finity. Discrete spectra in connection with stationary eigenfunc
tions have been used in similar problems by Rice27 and more 
recently by Hamilton28. They constitute a reliable basis, but the 
actual calculations are much simplified by the use of ¿-functions. 
Nevertheless, we shall sometimes for convenience in writing use 
discrete spectra.



Nr. 15 29

26. We try to tind a solution of (38) whose zeroth order 
approximation represents a state with the electron in the ground 
state N = 0 (which for simplicity we suppose to be non-degen
erate), and with one quantum present of frequency co and polariza
tion IV. Accordingly we put

W = 2,c?>0{n'} + Oe, W = Eo + co + Oe2. (42)

It may also be expected that c” is of the first (or higher) order 
in e, except for those n for which v = w, kn co. In this chapter, 
we shall show that this “Ansatz” leads indeed to a solution, if 
the energy is too small for excitation

Eo < W < Ex or co < Ex — Eo = Klo (43)

and outside the level width (which may be expected, from the 
particular case in 21, to be of order Ajf0/x)

Åio — co ))> Ajq/x. (44)

One then finds to the first order from (38 a) and (38 c)

<Nn'0> n,
en-wc°’

nmcN (45)

all other coefficients being of higher order. Substituting this in 
(38 b) and omitting orders higher than the second, one gets

(EN-W + An)i£ = [<NnN'> <N'n' 0> <Nn'N'> <N'n 0>

( <Nn'N'><N n'()> * <Nn'n'0>| c".

<Nnn' 0>l cn' 
0

(46)

This shows that all are Oe2, except perhaps when En — E + kn 
is small. Owing to (43) and (44) this can only occur if N = 0, 
kn œ co, and in that case (46) becomes

(/cn co) c0 —
|<0nN'><N'n'wl)> <0ziW><N'n0> 
I EN,— W + En,-W+2co <0n'n'0>l c"w. (47)

Here the value kn = co is used in the factor { ) ; and also kn> = co, 
because in the sum over n' only terms with kn- & co are of order
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e2. Moreover, only the coefficients c™" referring to the polariza
tion of the incoming radiation are retained, since the other coef
ficients are Oe2. The second term in (46) has been omitted; it 
would yield a contribution

which can be absorbed in the term with Eo on the left. Thus it 
would give rise to a shift of order e2 in the atomic energy levels, 
analogous to the last term in (39). Outside the resonance region, 
however, it is a term of relative order e2 and may be neglected.

Taking v = w in (47) one gets the equation

(Jcn-(0)cSW = Tn0(M)^TncS',V, (48)

where (see App. C)*

0(co) =
L<0_| ij, V| N > Ia _ <() I ,, V| o:>l<0p„V|N->P +

E y., Eq O)
(49)

27. (48) is a set of homogeneous equations for the unknown 
CqW, which has the form (A 1) except for the factor 0 depending 
on the eigenvalue co. It can be treated in the same way, but it is 
convenient to perform now the transition to the limit in
order to use the formalism for continuous spectra. Introducing 
continuous functions r(k) and c(k) by

one can write for (48)

(k — co) c(À) = (50)

Now, as is shown in A 7, the solution of this equation is

c(k) = ?(£){(£ —co)“1+ Â<5(À —co)} C,

* Pw is the component of the momentum in the direction iv. 

(51)
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where C is an arbitrary constant and the eigenvalue À is determined 
by the equation

p00
W = \r^di+W> (52) 

vo
obtained by substituting (51) in (50).

In the integral the principal value has to be taken at k = co.
It is, however, of order e2 and is negligible compared to the left
hand side, which is of order 1. It does not matter that the integral 
is logarithmically divergent at k = 0, because other terms of the 
same order have already been neglected and from 15 we know 
that they will cancel the divergence (see 39). The solution for Z 
can then be written with the aid of a new quantity £

z =—n cot £, tan £ =—tit(co)20(co) . (53)

Clearly £ = Oe2, Å = Oe~2, and C will be of order e.
At this point the problem of determining l/7 has been solved 

in principle. For a given co one can find Å from (53) and then 
c(7<) from (51). All other coefficients then follow in successive 
approximations, the first step being written explicitly in (45). 
By means of the conditions (43) and (44) it can easily be verified 
that they are small of the order anticipated in (42).

It might seem from (38) that for v^iv can also become large 
when kn & a>. These coefficients correspond to scattering with the in
coming frequency but different polarization, which can be treated in 
the same way as the Raman scattering (see 35). In the next chapter it 
will be shown that our solution is not invalidated by such singularities 
in the coefficients.

28. In order to investigate the physical aspect of the stationary 
state, it is again (cf. 19) convenient to construct a classical ana
logue. Let a classical field be defined by*

A(f) = æ(e'* ’/r)Z|/3/2LÅsin(V-’!„). (54)

then it can easily be checked by direct calculation that the time 
average of A(/)2 is equal to the expectation value of the operator 
A'2 in the state V'o — XnCQW (n ,iv}, provided the vacuum ex-

ew is a unit vector in the direction tv. 
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pcctation value is subtracted. Owing to the singularity of c"w at 
kn = co, (54) satisfies the wave equation for large r; consequently, 
E(/) need not be introduced separately, but can be replaced by 
— A(f). The expectation value of any quadratic expression in A' 
and A' is equal to the time average of the same quantity for the 
classical field (54). The non-singular terms in V7 do not give any 
radiation at large distance, nor does the proper field A0. Thus 
A(/) may be used to find the ingoing and outgoing radiation.

In order to compute the field, we write (54) as an integral 
and substitute (51)

A(f) = 2 (c”’/r) ,\ J 3/2 nk sin [kr — T¡(k)} c(k)dk. 2 sin cot

= <£(e",/r')(2e/in co) cosr/ (co) [cos{cor——cot £ sin (cor—^ («>)}] C sin co /

ew 2 e= —2--------cosn(co)r mco
sin (cor — r¡— S)

sin £ C sin cot.

An elementary calculation now gives for the total incoming energy 
per unit time I the value

7 = (2 xm)~1 {cos r¡(co)/sin £}2 C2,

and the normalization constant can be expressed in I:

C = (sin £/cos ?7(co)} |/2x/n7. (56)

The field now becomes

A(f) = — |/12 72 (e,u/cor) sin (cor — t] — Ç) sin cot

and £ appears as a new phase shift to be added to the phase shift 
T] of the free electron.

where the oscillator strength f^0 has been introduced by29

29. For this phase shift £ follows from (53) and (49) the value

|<0|P,„|N>P = Zf'^,0 = ZfÑ» = 1- 

(55)
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Since both v¡ (the phase shift of the free electron) and £ (the shift 
caused by the binding) are of the order e2, the total phase shift 
£ = £ + ?? becomes, omitting terms Oe4,

The subscript has been added to remind that this is the shift for 
the radiation with polarization in the direction iv. For a central field 
of force one has /*,() = , so that the phase shift is independent
of the polarization. In that case (57) is identical to the expression (32) 
for the phase shift caused by a set of independent oscillators. By using 
anisotropic oscillators, one can also construct a model with the more 
general phase shift (57). Hence, in this respect the atom in the ground 
state can be represented by a set of oscillators; but (57) is only approx
imate (see ch. IV), whereas (32) is true to all orders of e.

30. It is convenient to define the region of resonance for each 
atomic frequency KN0 as those values of co, for which in the 
sum (57) the term with KN0 predominates, so that the terms with 
different K may be neglected. In general it is sufficient that 
I co — ArV0|«/<N0, but if the line is very weak, or very near to 
another line, the resonance region may be narrower.

The natural line width is the region where tan £ is not small, 
i. e. where co — KN0~ K^q/x. Outside the line width the omission 
of the principal-value integral in (52) is justified. For visible 
light the line width is of the order 137’ -3kn 0; this is in general 
much narrower than the resonance region30. Hence it is always 
possible to apply either the simplification for the resonance region, 
or the simplification for outside the line width, except if the distance 
between two lines is comparable to their widths.

Now (57) has been derived under the restriction (44), that 
means outside the line width. In this approximation there is no 
reason to write tan £ rather than £ or sin £. In ch. V, however, 
the region of resonance will be studied, with the result that owing 
to the choice tan £, (57) also holds inside the line width (apart 
from a small frequency shift). It is noteworthy that our derivation 
should yield a more precise formula than is warranted by the 
calculation.

Granted this validity of (57) inside the line width, it is possible 
to derive the formulae for emission from this expression for the 
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phase shift, as has been shown in 22. The probability per unit 
time of transition from the state N to the ground state 0, under 
emission of radiation with polarization w, was there (eq. (35)) 
found to be K^q^q/x, in agreement with the usual result29.

31. The influence of the presence of the atom on the field can 
be described by a polarizability tensor expressing the electric 
moment M of the atom in terms of the incoming field strength E:

The diagonal elements are related to the phase shifts ac' 
cording to (B 12). Thus we find outside the line width

in agreement with the Kramers-Heisenberg formula31. The phase 
shift is also connected with a cross-section for coherent scattering 
(with the same polarization), viz.

For the non-diagonal elements the coefficients Cq" for 
p# 0 have to be solved from (47). This will be done in the next 
chapter, because the calculation is the same as for the Raman 
radiation. For a central potential field V they are, of course, zero. 
Otherwise some of the energy of the ingoing radiation is lost in 
radiation with different polarization. This energy loss can be de
scribed by an “absorption” cross-section cra, which, according to 
App. B, is associated with an imaginary term in the phase shift. 
This term, however, will turn out to be of higher order (see 35).

Chapter IV. The Raman Effect.

32. We shall now consider the case where the frequency of 
the incident light is higher than one or more of the absorption 
frequencies of the atom. Thus we suppose, instead of (43),
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< W < + 1 or O < M < + 1,0

and we shall use the subscript L for the states that can be excited
(L = 1,2,..., M). The region of the line width is still excluded:

M^m+i,o — M )) + i,o/x- (59)

In this case, some of the energy factors on the left-hand side of 
(38) may vanish and the solution found in ch. Ill seems to break 
down. It will be shown, however, that the order of magnitude of 
the coefficients is not altered by this singularity, so that actually 
the solution is not invalidated.

First take the expression (45) for c”m. As only the first order 
is required, and c" = Oe2 except if knœ a>, it may be replaced by

„nm __ 
(L

Hence the vanishing denominators do not occur in the first order 
expression of c£m, which has been used in deriving (57). Therefore 
the formulae of the preceding chapter can be maintained, provided 
that it is shown that the higher order terms may still be considered 
to be small. That this is indeed justified, in spite of such vanishing 
denominators, is due to the fact that wherever these denominators 
occur in the Schrôdinger equation (38), one has to sum over kn. 
The resulting sum will turn out to be of the same order as it was 
supposed to be in ch. III.

Take, for example, the expression (46) for c’¿. As we are 
interested in the behaviour for those values of kn for which 
El — W + kn is small, it is possible to insert in the right-hand 
member the value kn = W — EL = a)L. Omitting terms Oe4 one 
gets

(kn-ML)clv= Tn0lLw^ciu>,

where (App. C)

<L|g,V|N'XN'|ggy|0> <L|g„V|N,XN'|8,V|0> .
+ EN.~Eo + o>L - 

(<L|P,|N'><N'|P„|0> , <L|P„|N'XN'|P„|0>] 
OCX i rz . iz i i ■

(60)

3*
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Going to the limit of a continuous spectrum and substituting (51), 
one finds

(k-wL)cvL(k) = t(Æ)0^t(co)2ÂC.

Hence cL(k) has a singularity for k = wL, which will give rise 
to a radiation field that extends to infinity. On dividing by k — wL 
a term inô (k — coL) must be added in order to get only outgoing 
radiation :

4(0 = -T(k)0,C„{(k-æL)-1 + i7id(k-<oL)}]/2Ilxm^cosl (Cl) 

(with the use of (56) and (37)).
It is now clear that in any summation over k, such as occurs 

in (38), cL(k) can be considered as a quantity of order e2 (one 
factor e from r(k) and one from x~2), in spite of the singularity. 
The same holds for the other higher order coefficients: each lime 
a denominator vanishes it gives rise to a radiation field; as in
going radiation of any frequency other than co is precluded by 
the boundary condition, the singular term must be supplemented 
by an z%ô-term, and the order of magnitude after integration over 
k is not increased. But if there were also ingoing radiation of the 
same frequency, then instead of in an arbitrary parameter would 
appear, which might take large values.

33. The radiation field belonging to the frequency wL may 
again be represented by a classical field, which can be found 
from (54) by replacing c™v by c™ and co by coL:*

AL(f) = —2 (ew/r) \ |/3/2 nk sin (kr — rffåcL, (^) e '<>l't dk

= Xe"---- ?---- 1/3/cos
r x m cowl

This shows explicitly that there is no ingoing radiation. For the 
total outgoing energy per unit time one finds by an elementary 
calculation

/£ = 4(xmco)-2|0^o|2/cos2£(co). (63)

This formula has been derived only outside the line width and in 
that case cos2 f is indistinguishable from 1. It is interesting, however,

(62)

3 denotes the imaginary part (without the factor /).



Nr. 15 37

that (63) can be extrapolated to the region of a line width (co 
say), because Ø^o cos £ remains finite. One would thus find for the in
tensity of the Raman lines in resonance

Here /^l is the total oscillator strength for the transition from the level 
to the state L for the polarization v.

fvML = (2/mKML) ^\<^L\Pv\M^.
I1

In 42 it will be shown that this expression for 7¿ in resonance is nearly 
correct. On substituting for L the value M, it gives 7m = 0, so that this 
Raman line disappears without discontinuity when drops belowK^o.

In order to compare (63) with well-known results, a connec
tion has to be established between the energy How J of a plane 
wave and the ingoing energy per unit time in its dipole component. 
According to App. B this relation is I = (3 tc/2 co2) J. Hence, the 
energy in the Raman line with polarizarion v is found to be

8% /eV /com2 y f<L|Po|N><N|Pro|0> alPujNXNlPjO» J cos2£.

This is the radiated energy for a given final state L. The total 
energy with frequency wL is obtained by summing over the dif
ferent states with the same energy EL and over the polarization v. 
The result agrees with the usual expression32, apart from the 
factor cos2 £. 34 

34. The question may be asked how this energy loss is taken 
into account in the Rayleigh radiation. It is true that, owing to 
the phase shift £, the intensity in the forward direction is de
creased, but the corresponding amount of energy is found in the 
scattered Rayleigh light. However, in the next section we shall 
show that each Raman line gives rise to an imaginary term in £. 
Such an imaginary phase shift causes a decrease in the intensity 
in the forward direction without a corresponding increase in the 
Rayleigh scattering, and is therefore connected with an “absorp
tion” cross-section <ra. This imaginary term in £ will turn out to
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be of the order e4 and has therefore consistently been neglected 
in the foregoing. The absorption cross-section tra is linear in this 
term and consequently also of the order e4. On the other hand, the 
real part of £ has been fourni to be of the order e2, but as the 
scattering cross-section <rs is quadratic in this term, it is also of the 
order e4. Thus the energy decrease due to Raman scattering is of 
the same order of magnitude as that due to Rayleigh scattering.

Of an incoming plane wave with energy flow J the energy 
crs./ is lost in Rayleigh scattering. The energy aaJ is lost due to 
Raman scattering, but only part of it is found in the radiation, 
the remaining part being used to excite the atom. If craL is the 
cross-section for the Raman line coL, then clearly

or Il!^l= (6^)

This equation can also be interpreted as the conservation of the 
number of photons. We shall now check that it is indeed satisfied.

35. For this purpose we calculate the higher order correction 
in (57) due to the imaginary term in (61), but still omit real terms 
of higher order. Repeating the calculation in 26 one linds new 
terms in (46), which result in an additional term in (47), viz.

«QnN'XN-n-L'> <0 n N'> <N'nI/> _ 1
I En.-W + EN.-W+kn + k„. <0 nLq<i.-

On substituting from (61) this becomes

p' w 
L'O Z7TÓ (kn--- WV) rT u)

0 i 7tTnx(MLy 0o"L' 6>L'O S T W C(k) dk ■

With this addition (50) becomes

(7c—Co)c(Å) = T(Á')0(w)ST(F)c(Á-,)dF4-Z7rT(Á-)T(wv)2|0^|2jT(Á-/)c(F)í///.

Solving as before by means of the “Ansatz” (51) one finds

0 + Z TTT(íOl')- I ®()L'
£

Âr(co)2
(summed over L' and v').

tan £
TIT (ft»)2

Writing £ = — i£" one finds for the imaginary part

£" = ti2t(co)2t(col,)2 I 0("’£

(65)
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The corresponding cross-section for one final state L is (App. B)

8 n
3 co2 (66)

Comparison with (63) shows that indeed (64) holds.
The scattered radiation with the original frequency co but with 

different polarization can be treated on equal footing with the 
Raman radiation. Its intensity is given by (63) when L = 0, 
v # w. It also contributes to a.a. The radiation with the original 
frequency and the original polarization, however, contributes to 
the real part of £ and hence to <ts.

It is noteworthy that the damping by the Raman radiation is re
presented by imaginary terms added to 0, and not by damping terms 
in the denominators of 0. This is due to the fact that the Raman effect 
does not damp the excited states of the atom, but only the state with 
the primary radiation. (Actually there are terms in the Schrödinger 
equation (38) connecting the cN with the c£j other than c{], but they are 
of higher order and have been neglected in (45).) In case of resonance, 
however, both damping effects cannot be separated and we shall find 
an imaginary energy shift caused by the Raman effect.

36. For a complete description of the situation the higher 
coefficients, describing the probability of finding more than one 
radiation quantum, must also be computed. We shall here briefly 
consider the two-quantum coefficients c™1. They consist of a 
series in odd powers of e, and the first-power terms were shown 
in 32 to be free from singularities. The singularities in the third- 
power terms describe the radiation field after the atom, left in 
an excited state by Raman scattering, has emitted a subsequent 
quantum. Accordingly, it may be expected that they will furnish 
the breadth of the Raman lines, due to the broadening of the 
final level by the possibility of emission.

Instead of doing the complete calculation we shall retain only 
the most important terms, namely those connecting c}"11 with c£. 
They can be visualized as the emission of a quantum by the atom 
in the state L, whereas the other terms are just mathematical 
details. One thus obtains, just as in (45),

< (k ,k')=- (r(A) <0 I d„ VI [/> cí (k') +

+ t(*')  <0 I a„,V| !/><£.(*)}  {(/<■ +A-' — «)-1 + ito5(A-+ *'  — «>)). 
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Again an ZTïô-term has been added in order to obtain outgoing 
radiation only33. Inserting this in the equation (38 b) for c£j one 
finds the following additional terms in the right-hand member 
of (46)

T(Å) <N I d„.l'| 0> <0 I a„V| L’> S T(k')cl.(k') {(k + k' - «,)-> + 

+ inå(k + k' — <o)}dk' +
+ <N I VI o> <01 a„.v I L'> 4. (Í-) 5 r(k'y {<k + k' - «r1 + 

+ inô (k + k' — a>)} dk'.

As we are only interested in imaginary terms of order e4, we may 
write for the second term

in <N I V VI 0> <0 I V VI L'> t(co — k)2 c'i (k)
(summed over 0 < L' < M).

It is found that the non-diagonal elements (N L') give rise to 
real terms Oe4 in the solution and hence may be neglected. The 
diagonal elements can be brought to the left-hand side of (46), 
yielding (for N = L, L < M)

(k-o}L-irl)c"L(k), (69)

where = 7rr(7vLO)21 <L | VV| 0> |2 is the well-known expression 
for the transition probability from the state L to the ground state 0.

From (69) it is clear that c^(k) is no longer a singular function, 
but that one has to put

<W) = yUk)(k-coL-ir°Ly\

where 7l(^) is slowly varying for k in the neighbourhood of a>L. 
Hence the first term in (68) vanishes, because

J(jt'_(oL—ir»)“1 {(jt + r —co)“1-}-!^ (k + k' — co)} dk' = 0. 

Since F£ is small, the sum $ z(k)cl¿(k)dk remains the same as 
before. Consequently one linds now instead of (61) the solution

cj-(jt) = — r(k)øyyk — ML-ir^y1]/2 îÿnTœ2 cos

which shows indeed that the Raman radiation has a width Fj¿.
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By inserting this into (67) one obtains the probability of 
finding two quanta with frequencies k and k'. It is seen from the 
resulting expression that one of the quanta has a frequency in a 
neighbourhood of the order /’(¿ around coL, and that the frequency 
of the other is such that the sum of both is exactly co. By taking 
into account still higher coefficients, one can find in the same 
way situations with more than two quanta; it then turns out that 
all but one of the frequencies have certain probability distribu
tions around atomic frequencies, while the sum of all is exactly 
equal to the incoming frequency.

Chapter V. Resonance.

37. In the region of the line width, (44) and (59) no longer 
hold and 0 can become very large. In that case the principal
value integral in (52) is no longer small compared to 1/0 and 
cannot be neglected. Thus we are faced with the divergence of 
this integral for small values of k, and according to 15 we have 
to look for other terms which cancel this divergence.

On the other hand, if only the region of resonance is con
sidered, it is possible to neglect in 0 all terms referring to other 
atomic frequencies, so that one may write (for co œ KM0)

m s. 2 xrjax  = mco —2---------2 = —------------- . (70)
— 60 %0---M

This is the usual approximation for resonance (cf. 30); we have 
to resort to it in 38, but it will be possible afterwards to correct 
the result.

To avoid irrelevant complications, we suppose all levels to be 
non-degenerate and consider only one direction of polarization. 
More precisely, we assume

V(R) = VX(RX) + V/Zy + VZ(BZ) (71)

with the result that the Hamiltonian (36) is separable. In the 
same way as for the harmonic oscillator we only consider one 
of the three parts, omitting superfluous indexes. The same Schrö- 
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dinger equation (38) holds, but instead of N,n may now be 
written N,n.

Thus we suppose that the incoming frequency is near to the 
atomic frequency KM0, namely

co — KMq ~ K^jq/x, or IV — Em ~ .

If again c'ol is assumed to be of the order 1 for kn & co it now fol
lows from (38 a) that cM may be large. A closer inspection of the 
example of the harmonic oscillator suggests cM = 0e~1 and then 
follows from (38 b) c'y = 01 (except perhaps for N = M). We 
further put cN — Oe for N M and also c'y" = Oe, and proceed 
to construct a solution satisfying these assumptions.

38. Instead of (45) one now finds from (38 a) and (38 c), to 
the first order,

(Nn'N'> . 1 <2Vn'n'J/>
CN ~ p _ yy CN' 2 E — IV C w ’ (N M)

„nm
CN

(NnN') c™, + <NmN') (%, + <AM> cM
— W + kn + km

(Em-W)cm = -^Mn'Ny^l.-i-^ln'n'MycM. (72)

Inserting the first two expressions into (38 b) one gets an equation 
for Cy of the form

(EN VV + Ázl) Cy = Ay CM + BjVJV' c'yx + Cy/. (73)

(73) and (72) together are a set of homogeneous linear equations 
with eigenvalue parameter IV. They can be simplified in several 
respects.

Io. Since = Oe2, the non-diagonal elements (N N') 
may be neglected, because they would give rise to terms Oe4 in 
the solution. The diagonal terms (with Cyy) may also be neglected 
in the presence of the term with EN— W + kn, except when the 
latter is small. Hence the value kn = IV— EN = mn may be used 
in the expression for yielding

C (OJN) 
NN

I (Nn'N') I2 

£N' ~EN + kn'
^<Nn'n'N> = — AN.

(74)
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2°. The terms with B™N> can also be neglected for N^N', 
but the effect of B™N cannot be seen so easily. Provisionally we 
omit that term too, and it will be shown in 43 that this amounts 
to the approximation (70) for the resonance region.

3°. To the first order, = —(NnM); and the higher orders 
(viz. Oe3) may be neglected. (It can be checked that this is also 
true for N = M, although in that case the first-order term van
ishes.)

With these simplifications, and writing

equations (73) and (72) become

(E^-W + â-)ca-(à-) = -T(À)<ïV|âV|d/>cA/ (75a) 

EM—W + ~<Mn'n'M>\cM = — (M\dV\Ny\r(k)cN'(k)dk. (75b)

39. Solving (75 a) for cN(k) one obtains

cN(k) = -T(k)<N\dV\M)(E'N-W + k)~' (N>M) (76 a)

«Ya’) - r(A-) (¿I d V| M> {(E'l - w + À-F1
(76 b)

c0 (k)=-r (k) <01 d VI {(E'o - VV + k)~1 + Âô (F; - W + Á)} cM. (76 c)

After substituting this in (75 b) the common factor cM can be 
cancelled and we are left with a characteristic equation for 2:

EM-'V + |<Wn'n'M> = | <M| 3V| .V'>|A

vo

4- in I <M I d V| L'> I2 r(coL<)2 + z | <A/| d V| 0> |2 r(co)2 
(summation over all .V' and over 0 < L' < M).

(77)

In order to compare this with (52) we simplify the latter by 
using (70), and write it in the form

p°° / 2

(Em-1V) = |<MpV|0>|2 \^“™¿-U|<M|dV|0>|2r(a>)2. (78)

vo
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Io. Whereas (78) contains one integral, (77) contains an 
integral for each level Ev. For each singularity in these integrals 
a term with in is added, except for the singularity in the integral 
with N — 0, as that is already accounted for by the term with 
All these terms with N 0 do not occur in (78), because in ch. Ill 
the coefficients (Ar # 0) have been neglected, since they are 
small if there is no resonance.

2°. In the denominators in (77) occur the shifted energy values 
EN instead of the Eo in (78). The difference, however, is of the order 
e2 and may certainly be neglected in a principal-value integral. 
(Actually it has already been neglected in the other terms by 
writing coL for VV — E'l.) Also the IV7 in the denominator may be 
replaced by EM inside the resonance region.

3°. The new term on the left-hand side of (77)

*<3/n'n'.V)> = * <Jf|d2V|M>$T(£)2itt

cancels the divergence in the integrals on the right*.  Indeed, the 
coefficient of l/k for small k is now

|<.v|av|^>p
En■ — Em

which can easily be seen to vanish (see, e. g., App. C). Both terms 
together give a small shift of the level EM, which turns out to be 
just Am, defined in (74).

40. According to App. C one can write for

(79)

This is nearly Bethe’s expression for the electromagnetic shift34, 
but owing to the factor cos2»/ it is convergent. The effect of this 
factor can roughly be represented by a cut-off at k = %. From 
Bethe’s work, however, it is known that the right numerical result

is obtained by cutting off at the Compton frequency in I x/137.
* This is the term mentioned in the last paragraph of 24, which arises from 

the term with oni)c^v in (36).
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This can be justified by relativistic considerations35, and a cut
off of the same order can also be found by taking into account 
the recoil of the electron36. Since both effects have been neglected 
in the present treatment, it is not astonishing that our result is 
wrong. On the other hand, we have not used any subtraction 
prescription ad hoc, but Bethe’s subtraction of the free electron 

• self-energy is here automatically performed by the elimination of
the proper field A°; that means that it is implied in the subtraction 
of the self-action of the electron. Moreover, the convergence factor 
cos2?? is obtained by using in the zeroth approximation the field 
quanta that are adapted to the unbound electron.

The line between two levels EM and EN suffers a frequency 
" shift Am — A\. This shift was shown by Oppenheimer37 to be

divergent on the usual theory. In fact, it exhibits the same diver
gence as the shifts A themselves, since in general the divergent 
terms do not cancel. Serpe38 showed that it is finite on Kramer’s 
theory in the special case of a harmonically bound electron.

Unfortunately his proof has no general value, because for the har
monic oscillator the shift is actually zero, as was shown in ch. II. (It 
can, of course, also be deduced from Bethe’s expression.) In fact, in the 
general case he should have found a logarithmic divergence, because of 
the omission of the A2-term. It may be added that he only found the 
first term in (74) and cut off the divergence at k = 0.

41. For the phase shift £ one finds from (77)

where
I
r

tan £ =
^mo/mo/2 x____

W — Em — A M + i rM
(80)

This “imaginary level shift’’ is caused by the damping of the 
state M due to transition to lower levels L, the ground state ex
cluded. The transition to the ground state does not give rise to 
an imaginary damping term, because in our stationary state it is 
balanced by transitions from the ground state. It does give rise,

i
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though, to a widening of the level in the same way as the width

^.vro Ímo/2 x Af 
resulted from (57).

The imaginary term in the phase shift is again assoeiated with 
a cross-section for absorption (App. B)

6 jr________ Fm____________
co2 (co - kmo)2 + (F«, + rAi)2 ’

where KM0 — ArA/0-|-/lM—/l0, co = IV—Eo— Ao. In this expres
sion the total line width

I'm = I'm + I'm - ¿ Kml f ml ft x
L = 0

appears. Adding the cross-section for Rayleigh scattering one ob
tains the total cross-section

_ 6j7t____ FmI'm
co2 (w KmoY + ^AI

This is the Breit-Wigner formula. Indeed, in our case the Raman 
radiation plays the same part as the y-ray emission in the case 
of neutron scattering. Thus, the Breit-Wigner formula is contained 
in the above expression for the phase shift:

tan £ = rA//(co Kmo + i r.

Clearly 7’v is just the sum of the residues of the integrand in (79), 
multiplied by — n. F’m is obtained by omitting the residue at KA/o. 
Hence the “complex level shift” zlA/ — í/aj in (80) can be found from 
(79) by taking the principal value at Kmo and avoiding the other poles 
by shifting the integration path into the lower half plane. If the denom
inator in <ra and <rt is written as | W — Em — Am -j- i Fm |2, the total 
complex shift Am — i Em of the level Em appears ; it can be found 
from (79) by shifting the whole integration path into the lower half plane.

42. Once Å is found, the solution is immediately given by 
(76). Cm may be used as an arbitrary factor, and on writing

— <0|dV|M>cA/ = C,
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(76 c) takes the form (51). The radiation field associated with 
the singularity in these coefficients can again be described by a 
classical analogue (54), which instead of (55) now becomes*

A(f) IC-2c- 
r mw

o3 sin (co r — Tj — £)
sin I Ce

From this follows for the ingoing energy per unit time

Z=(2x/n) 11 sin £ I 2e2^ | C |2.

From (76 b) one finds the coefficients cL(k), which determine 
the Raman radiation. The outgoing radiation with frequency co7 
can be described by a classical field (comp. (62))

rmo, 1 1

The outgoing energy per unit time is found to be

IL = <2/xm)|<LpV|l/>cM

(SI)

A nearly identical expression was found in 33 by extrapolating 
the formula obtained for non-resonance. However, the influence 
of the damping of the level EM, exhibited by the imaginary phase 
£ ", could not be found in that way.

Let again (see 34) <raL be the partial cross-sections and ./ the 
intensity of the plane wave whose electric-dipole part has an 
ingoing energy I. Then (81) can simply be written

showing that for each emitted Raman photon an incoming photon 
is absorbed. (81) has only been derived for 0< L< M, but for 
L = 0 it takes the form

I e |2 __ 9 t"
/0 = 4 sin £ I“ e I = asJ,

which is obviously true if Io is interpreted as the outgoing energy 
of the Rayleigh scattering.

♦ The difference with (55) is that £ is now complex.
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In the customary picture39 the scattering in resonance is 
visualized as the absorption of an incoming photon—after which 
the atom is in the state M—and a subsequent spontaneous emis
sion of a photon, either with the same frequency KM0 or with a 
lower frequency KML. Now, an atom in the state M would spon
taneously emit waves with frequencies KyiL, whose intensities are, 
according to 30, K3MLfML/>c. The fact that this is just proportional 
to the Raman intensities IL in (81) is the justification for the 
customary picture. For the probability of the atom being in the 
excited state M one then has to take

4 X
Kwo Ímo

Since atJ/KM0 is the number of photons absorbed per unit time, 
1/2 rM has to be interpreted as the average time during which the 
atom remains in the excited state M.

However, this picture fails to make clear that the sum of the 
frequencies which the atom emits on its way back to the ground 
state is exactly equal to the incoming frequency, as shown in 
3640. Neither does it represent the interference phenomena cor
rectly; but we shall not discuss that here (cf. 51)41.

43. In this section it is shown that the omission of the terms 
in (73) is equivalent to using the approximation (70) 

for the resonance region.
For each particular N let Z^ be the orthogonal matrix that 

transforms the matrix knônm— to principal axes:

». ynm fínrí yn'm __ yrtrii
kn^(N) ^NN^(N) ~

Here km denotes the new eigenvalues. Clearly Z/y" = ôntll + Oe2. 
Now if the are transformed by

(82) 

then (73) becomes, omitting terms Oe3,

(ßN — tV + kn) Cy = Ay cM + C^N cnN.

(72) remains the same equation with c'y instead of c'ÿ. Hence 
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the omission of the term B™N c^ in (73) is justified, provided the 
unknowns Uy are replaced by the transformed ones c^.

Consequently the equation (77) for 2 is still valid, because 
it does not contain the c’s. However, the connection of 2 with 
the phase shift between ingoing and outgoing radiation is altered. 
Indeed, since B™N varies slowly with n and n, the theory of A 1 
can again be applied, and for Zf$ is then found a matrix of the 
type (A 3). Hence, according to A 4, (82) is a transformation to 
new quanta whose phase is shifted with respect to the old ones. 
With the method of A 7 it is found that this additional phase 
shift is given by

tan — —™BNN (cOjy, .

Since the Rayleigh radiation is described by the c”, the total 
phase shift for the coherent scattering now becomes C = ?7 + £ + £0 
(?7 for the unbound electron, £ given by (80)). Using the explicit 
value of /^(co.co) one finds

tan £0 =

These are just the terms that are omitted in 0(co) by using the 
approximation (70).

Combining the results one obtains for the total phase shift

tan Ç =

This expression is correct to the order e2 for all values of co. As men
tioned in 34, however, the imaginary terms of the order e4 are also 
needed for the correct value of the total cross-section. They cannot 
be found so simply by a combination of the formula for non
resonance and those for resonance with the different levels. The 
right expression is found in the next chapter.

Dan.Mat.Fys. Medd. 26, no. 15. 4
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Chapter VL General Result.

44. In chs. Ill and IV we have considered the case where the 
incoming frequency co does not coincide (within the line width) 
with one of the atomic frequencies; whereas in ch.V the region of 
resonance was considered. Both cases had to be treated separately, 
because for an explicit solution of the Schrôdinger equation either 
of the simplifications mentioned in 30 had to be employed. 
Fortunately the regions where these approximations are valid 
overlap, so that for each value of co a scattering formula could 
be obtained.

Nevertheless there are some difficulties in linking up these 
expressions. It is not clear how the imaginary damping in the 
denominator of the resonance formula (80) merges into the imag
inary term in the non-resonance formula (65). Moreover, the latter 
has different values on both sides of the resonance region, cor
responding to the disappearing of one Raman line when the in
coming frequency drops below an absorption frequency. There
fore it is of interest to find one formula for all values of co—which 
is the purpose of this chapter.

In the choice of the approximations to be used we shall be 
guided by the calculations in the previous chapters. All those 
terms which were shown to contribute only to the small level shifts 
will be omitted, since we are not interested in them now*.  Then 
il is possible to write a general equation (96) for the phase shift, 
which comprises the previous results, and in addition describes 
the transition between them.

45. We take again the simple case of the previous chapter, 
namely a separable potential field (71). Furthermore we suppose

+1 and EM + 1 — ^ )/ A'm +10/2 X,

but we do not exclude the width of the level EM. The subscript 
L will again be used for levels between Eo and EM.

Again c0(Â) will be of the form

CoW = {(*  - O')-1 + AÓ (k - «)}

* Consequently, from a formal point of view the calculations of this chapter 
could also be based on the usual Hamiltonian.
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and cN(k) for N > 0

0#) = 7n(*)  {(*  — mn)~ 1 + inô(k— coN)}. (83)

Whenever in the Schrödinger equation cN(k) is integrated over k, 
the term with (k— wN)-1 gives rise to a principal-value integral. 
Since we have seen in the previous chapter that these integrals 
are of importance only for the level shifts, they will be omitted 
here. The d-term vanishes for N > Al, so that in the summations 
cN(k) may be neglected altogether for N > M.

'Phus, writing for brevity

= 7n> tOn) = *n> ¿o = ¿> ¿N = (N> 0),

one obtains from (38 a) and (38 c), analogous to (45),

<N\dV\N'> , /O4 x
cn —------ £ yy tN'^N'7n’ (84 a)

A’

<v| 3V\N'\cN(k,k’) = Ï ^V.^¿-T(k)AN,yN>ó(k'-coN,). (84b) 
+k±a)N,

The last term in (46) contributed only to the level shift and there
fore the corresponding term in the expression for cN(k,k') has 
been omitted here. Inserting (84) into (38 b) one gets an equation 
of the form

(^n — + k)cN(k) = T(k) FNN’(k')TM'Ax>’yN’
(summed over N' from 0 to M).

The complete expression for FNN>(k) is not required, because we 
now substitute (83) on the left and take k = cdn. It turns out that 
Fnn'(mn) is Uie compound matrix element 0nn'> which occurred 
in the Raman elfect (see 32 and App. C), and we find

Vn — ØNN' ^n'Vn’ • (85)

Now (85) is a set of homogeneous equations for the yN 
(iV = 0, 1, - • - , Al) with one adjustable parameter Zo = The 
condition for solubility is, writing 0nn>tn> = TNN>,

4*
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— ^TiVZO ........................................................ 1 — lnI MM

1 — ^7’00 - — i n Tya . . — m'l {)M
— 1 — ZTtT^ — inTí2 • . — in 7 \M
— ^^20 — inT2i 1 — inT22 . • — í m 2 M = 0.(86)

This is a linear equation for Z, or for tan £ = — %/A. We shall 
now show that it contains the formulae (65) and (80) as special 
cases.

46. First, consider the case that m is not inside the line width, 
so that all TNN> are small, namely Oe2. The evaluation of the 
determinant (86) with omission of the terms Oe2 is trivial and 
yields

0 = 1 — ÂTqo = 1 — Ât(w)20oo,

which is identical to (53). Retaining also terms of relative order e2 
one finds

1/Â = 7’00 + in (7’01 7’10 + 7 02 72o + ‘ ' + ^om ^mo) > (87) 

which is identical to (65).
Secondly, let VV be so near to EM that in the sums over Al 

the terms with VF — EM = coM in the denominator are large and 
the other terms negligible. Then, according to App. C, one has

TNN> = —Unun'I“)m with llN = Tjv <AT I ö VI AZ>. (88)

Instead of evaluating the determinant (86) it is more convenient 
to solve (85) directly. These equations are now

— mm 7o = I "o |2^o + «o ' ‘ Th' >

— mmVl = llLllS^Vo + uL-in- llL’ ?L' •

From the second line:

— Mur) = (««) «Ôtyo +

with the abbreviations

M
(uu) = n^ ií¿uL,

L — l

M
(uy) = n^utyL.

L = 1
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This, together with the first line, makes two homogeneous equa
tions for y0 and (uy), which yield for the parameter Å

n _ I u0 I2_
Å œM-\-i(uii) (89)

This equation is identical with (80), but for the level shift, which 
has been neglected in the present chapter.

47. The equation (86) for z is still not general, because it 
only holds between the levels EM and EM + 1. When W drops 
below li, one row and one column have to be obliterated in the 
determinant, and when W increases beyond EM + i, a row and 
a column have to be added.

Tilis discontinuity is related to Stokes’ phenomenon for asymptotic 
expansions42. Indeed, our boundary condition that the radiation with 
frequency œyj should contain only outgoing waves, refers to the asym
ptotic behaviour of the radiation field at large distance. The decomposi
tion of the field in ingoing and outgoing waves is practically unique 
only in the wave zone. When wyj tends to zero, the wave zone recedes 
to larger and larger distances. When it is beyond the observing apparatus, 
the boundary condition is no longer an appropriate expression of the 
experimental conditions. In that case the scattering centre and the 
observing apparatus cannot be treated as separate systems. (In actual 
experiments, of course, these long waves would not be detected by the 
spectroscope.) Consequently, there is a “region of discontinuity”:

(distance scattering centre—observer)-1 ~ 10~6 (90)

where our formulae are physically insignificant.
It seems that there are also mathematical difficulties, because the 

neglected principal-value integral

might become large for small coy¡. However, it is clear from (83) in con
nection with (61) and (37) that yM(£) contains a factor k~*,  and can 
be expanded for small k in the form

• Now we have
^Af(^ — 2 (ao 4" 4" * ‘ ’)• 
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and the higher terms are certainly finite for co v = 0; hence the integral 
is always a small quantity, even when is small.

The above considerations are only valid if the level is sharp,
i. e. if the state M is metastable. If it has a finite width then the_ j M’ 
expression for cy¡(k) contains a factor (Zc — coA/—i instead of the 
¿-function (see 36), and no discontinuity arises.

Accordingly, (86) can be written in a more general form by 
introducing a function p((o) defined outside the region of dis
continuity (90) by

p(co) = 7t (co > 0), p(co) = 0 (co < 0);

inside this region it is necessarily indeterminate. On replacing 
in (85) by p(coN) one finds instead of (86)

where pN = p(coN). It is clear that for EM<W<EM+i this 
reduces to (86).

For the phase shift in resonance one now finds from (91) 
the same formula (89), but with

QC
(««) = ¿>(coL) u£ul.

L = 1

Owing to uv/ = 0, this result amounts to exactly the same as 
before.

48. Although (91) completely determines À as a function of 
co, it is not yet fully satisfactory. It is unduly complicated by 
higher order terms, which are meaningless since terms of the 
same order have already been neglected in obtaining (91) from 
the Schrödinger equation. As a consequence the results of the 
previous chapters could only be derived from (91) by rather 
lengthy manipulations. Therefore we shall now transform (91) 
into a form that resembles more closely the formulae of the 
previous chapters.
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For Tnn, we use an expression similar to (88), but more 
complete :

\ u¿ uh*
^NN' ~ ’ UN wNtN (N I ? I jy • (92)

Here the first summand in (Cl) is taken into account, but the 
second one has still been omitted. It can easily be added after
wards, since it does not give rise to resonance. (85) now becomes

Tn = — (unImj) ¿n’ un' ' ^N’7n'>

from which, writing uh ^n’Vn’ mjYj > we get

uh' ^xllh/r

This is a set of homogeneous equations for the yJt whose charac
teristic equation determines A (= Ao):

Det. ¡I tojôjj + ÂUq *«o  + i (zzJzzz) II = 0.

Here (zzJzz7) is defined by

O'7«1) = ¿ P(wl) «¿*«1-
L = t

fhe determinant can be expanded in powers of A and it is 
easily seen that only the zeroth and the first power survive. With 
the abbreviation toj + z(zzJzzJ) = toj one finds

<o„ 
z(zz1zz°) 
z(zz2zz°)

z(zz°zzx) 
coi

z(zz2zzx)

z’(zz°zz2)
i (iz1zi2)

COg
+

The determinants can easily be worked out if real terms of 
relative order e2 and imaginary terms of relative order e4 are 
omitted. After dividing by . . . one thus gets
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iiNnN* X—1 X—7 nN* iiN’
uy.+i y P(æL)

aN — C0N (93)

<*>N  = O)x + i ¿LP Cml) Ul* llL-

In the approximation for resonance (with the level Ev/) this 
equation reduces to

1 _zzo/u¿y*  #mo/mo/2*

wki û>m+ïAî‘

It should be noted that the imaginary term in coM is equal to 
only inside this resonance region.

Outside the line width the denominator in the second term 
of (93) can be replaced by mn,wn; in the first term it can be 
expanded, yielding

zzo zz

w.v
0

This imaginary term just furnishes the terms with N = N' that 
are missing in the double sum in (93). With the aid of (92) our 
general equation (91) thus reduces to (65) outside the line width.

When Kramers and Heisenberg (ref. 31) constructed their 
scattering formula, they considered resonance fluorescence as 
partly due to spontaneous emission by the excited atom (cf. 42). 
This gave rise to the question how this radiation combines with 
the Rayleigh scattering that is also present outside the line width. 
The present treatment shows that, basically, there is only one 
kind of scattering process, which in resonance has some features 
in common with spontaneous emission.

49. The equation (93) has been derived under certain simpli
fying assumptions, but it can be generalized, without performing 
any new calculations, by following up the analogy with the results 
of the previous chapters.

Io. The terms that have been dropped when writing (92) can 
be supplemented by comparing (93) with (65). Both equations 
can be combined into

tan £ = — tit (co)2 {©«o + ¡ £p (a>L) t (col)2 Olo}- 
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Here the prime means that all denominators cov are to be re
placed by

m'n = a>N + i Ea>i | <N| P\Ly |2; (94) 

and the bar means that all terms with denominators are to 
be discarded:

0'«L0L«= e;LØL0-^(<o2«>lM)|<0|7J|JV>H<JV|/J|Z.>p. (95)

2°. The assumption (71) of the potential being separable can 
be dropped if also radiation with different polarization direction 
is taken into account. From (65) it is clear where polarization 
superscripts have to be added.

3°. Degeneracy can be accounted for by writing L instead of 
L, following the example of (65). The result is an expression for 
the phase shift £w of the radiation with frequency co and polariza
tion iv, caused by an atom in the state N = 0,/li = //0, viz.

tani,„= (96)

The sum over L = (L,p) includes L = 0, /li /z0, but not the 
initial state L = 0, (cf. 35). In (94) one should now
write co'\-,/z — con to exhibit the dependence on /¡.i, and P rather 
than P to account for the three directions of polarization. Then

0'wl>UO/zo;N
<(>/.0| P„| N'XN'I 7>„,| N>)

M + ^N'N
(97)

4°. From ch. V it seems that also the level shift can be embodied 
in (96) by a slight alteration of the definition of w'N. However, 
the interaction with the electromagnetic field constitutes a per
turbation which splits up each degenerate level into a number 
of components with distances of the order of the electromagnetic 
level shift. The matrix elements of this perturbation follow from 
(73) and (79); they are for the level En (see App. C)

(98)
VO
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Let us suppose that for each level this perturbation is cast 
into a diagonal form, with diagonal elements /lv say*.  Then 
each state N,ii has the shifted energy value + AN>fl = ËN 
and these shifts can be taken into account by putting

WN = WN-(ylN/i“yl0/<0) + Z2'LP(£OL)T(COL)2ft,il<NlP|L>|2- (")

The formula (96), together with (97), (99) and (95), describes 
the scattering by an electron in an arbitrary field of force, for all 
values of w except the region of discontinuity (90). The imaginary 
terms are given to the order ei, so that it yields the correct values 
for the cross-sections as, cra, <rt.

50. The formula (96) will now be compared with the results 
obtained by previous authors. Outside the line width (96) was 
shown to reduce to (65), which according to 33 is equivalent to 
the Kramers-Heisenberg formula. Actually our result is more 
restricted, since it has only been derived for scattering by an 
atom in the ground state. The Rayleigh scattering is described 
by the phase shift (57) and the Raman scattering by (65). The 
corresponding cross-sections are (58) and (66).

The dispersion in the case of resonance has been treated by 
Weisskopf43 and by Breit44, using time-dependent perturbation 
theory. This method consists of taking an initial situation with 
the atom in the ground state and some radiation present. Since 
that is not a stationary state, other states are built up in the course 
of time and from the rate of increase of their coefficients follows 
the probability for scattering of the radiation present in the initial 
situation. Because of the difficulty of solving the resulting set of 
first-order differential equations, they had to resort to a simplified 
model with only two possible states for the atom. Hence the Raman 
radiation does not enter into the picture. Of course, also the line 
shift had to be neglected, because it would be infinite.

Weisskopf43 first calculated the Rayleigh scattering in re
sonance and found a line width T0 (in the notation we used in 
41), corresponding to the transition from the excited state to the 
ground level. Our additional line width T” is due to the transition

* In case of a central force, when there is no other degeneracy than with 
respect to the direction in space, this is automatically fulfilled if /i is the magnetic 
quantum number. 
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probability to other excited states, which he had omitted. Con
sequently his result is equivalent to (80), if in the latter AM and 
r'M are dropped.

It should be noted that in Weisskopf’s formulae the frequencies 
of the incoming and the scattered photons may differ by an 
amount yA (his notation). The reason is that he considers a 
state of the whole system which is not stationary, but whose 
energy has an uncertainty yA. That in our stationary state treatment 
such a quantity does not occur, may be considered as an advan
tage, because it has no bearing on actual observations.

Breit, in his review on dispersion44, gives the same calcula
tion of the scattering in resonance. In addition he analyzes the 
behaviour in time of atom and radiation field after the moment 
when the interaction is switched on. Again this is immaterial for 
actual scattering experiments : at most the decay of an excited 
state can be observed by specially designed experiments45, but 
not the decay of the initial state of the whole system.

Weisskopf43 also gives—without calculation—a formula for 
the resonance scattering in the case where more levels are present. 
This result is practically identical with ours; only the width of 
the initial level does not appear in our formula, because we sup
posed it to be the ground level. He also omits the width of the 
final level, just as we did (except in 36).

In a later paper46 Weisskopf obtained a general formula by 
writing the Kramers-Heisenberg formula for the induced dipole 
moment, and adding terms iT in the resonance denominators. 
This formula is correct when terms of relative order e2 are dis
regarded. However, since the imaginary terms Or4 in this formula 
are not correct, it cannot be used to compute the total cross-section 
for instance, from the polarizability by means of the relation 
(B 12)*.  Therefore it was impossible for us to generalize the 
expression (57) for the phase shift in this simple way.

Hamilton28 derived the usual results for emission and for 
scattering outside the line width by solving the time independent 
Schrödinger equation. For the physical interpretation, however, 
he made use of time dependent states, which he obtained by

* Of course the total cross-section can be found by computing the partial 
cross-sections for Rayleigh scattering and for all Raman lines:

CTt = CTaL •
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superposition of the stationary solutions. In his calculations again 
only one higher level is taken into account and, of course, the 
usual divergences occur.

51. The problem of finding the states of steady scattering by 
arbitrary atoms, which Kramers2 raised in 1948, has now been 
solved. Nevertheless the present theory of emission and scattering 
is incomplete on several points, even within the limits of non- 
relativistic dipole approximation. We here list these points in the 
order in which they seem to be logically connected.

Io. Second order emission can be described by a superposition 
of stationary states, chosen in such a way that at t = 0 the whole 
radiation field vanishes. Hence one has to find linear dependence 
relations of the kind (A 21) for quantum states whose ¡díase shift 
is given by (96). Since this is just a matter of algebra, there does 
not seem to be any fundamental difficulty in describing in this 
way the two-photon emission studied by M. Göppert-Mayer47. 
For the emission of three of more photons, one has first to find 
the expression for the phase shift in which the singularities in 
the coefficients cN(k,k',k") etc. are taken into account.

2°. Higher order scattering processes, in which the incoming 
photon is broken up into three or more photons, can be calculated 
along the lines of 36. The result may be expected to be identical 
with that of Giittinger48 and Weisskopf46, except that the line shift 
is included. However, processes in which several photons are 
simultaneously absorbed and one or more photons emitted, can
not be treated readily, owing to the incoherence of the incoming 
photons. It is true that by putting in (85) ÅN = —n cot (instead 
of taking all A’s but one equal to in) one obtains stationary states 
containing several ingoing waves with different frequencies. But 
these waves have definite frequencies mn and even definite phase 
relations, and therefore do not correspond to an incoherent mix
ture of incoming photons. Hence it is necessary to use the many
photon states for the description of the incoming field and, ac
cordingly, to introduce adjustable parameters z into the singul
arities of the coefficients cN(k,k'), cN(k,k',k"),• • • .

3°. Scattering by an excited atom has not been treated, be
cause it cannot be described by a stationary state. It seems pos
sible, however, to construct an appropriate decaying state in the
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following way. First one has to find the stationary states describing 
the scattering of two photons, one with the frequency co of the 
incoming radiation and one with a frequency k in the neighbour
hood of the absorption frequency, Awo say. These states—for dif
ferent values of k—have to be superposed in such a way that at 
I = 0 the radiation with frequency in the neighbourhood of AM0 

I vanishes. Since co has a fixed value for these states, they have
différent energies co 4- k + Eo with a peak in the neighbourhood 
of Consequently the superposition will describe a non-
stationary state with ingoing radiation of frequency co, in which 
initially the atom has the energy EM.

{4°. The classical analogue of the quantized electromagnetic field 
has only been used for one-quantum stales. It is desirable that 
for the many-photon slates a similar classical picture will be 

developed. The solution of this problem is not obvious, but pre
sumably it is possible to describe every state of the photon field 
by an appropriate mixture of partially coherent classical waves.

5°. Interference phenomena in the current time-dependent 
3 theory require special calculations49. In the present theory, owing

to the close resemblance with the classical picture, they can be 
analyzed immediately. Indeed, the Rayleigh scattered waves of 
two scattering atoms are both coherent with the incoming light 

j and therefore also with each other. However, if the ground level
is degenerate, incoherent scattering is also possible (see 35) and 
the two scattered waves will only be partially coherent50. The 
interference of Raman light can be studied in the same way, but 
a complete account is only possible after the problem 4° has been 
solved.

Appendix A.

A 1. The purpose of this section is to find the principal axes 
i of the quadratic form

^nn' æ/iæn' (Ci ^nn' i(n an^) n' >

where for definiteness fn and «„ are supposed to be real. The 
equation for the eigenvectors is

b sæn '^nn' xn' = ^nxn~^~ an'xn’ ' (Al)
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From this follows

æn (cnß/(s tn) with ß Xan'Xn’,

and by substituting the former in the latter one finds the charac
teristic equation for the eigenvalues

(A 2)

(A3)

a suitable choice of ß:which may be normalized by

-- y (A4)

From the orthogonality of

(A 5)

and in particular one has

with this

with the following properties. It has poles t„ with residues

It is useful for the calculations in 22 to associate 
transformation an analytic function of s

o

æzi — AÅnpZ/j/,

2 
“n •

2

s tn

2
Kn

there is one root larger than 
and there are no other roots. If there is an infinite number 
other roots may occur, e. g. complex roots.
each root sv corresponds an eigenvector Xn\

the matrix Xnv follow’

There is one real root between each pair of successive tn. If 
there is only a finite number of tn,
all tn,
of tn,

To

ônm

«ñ

X Xn V«n = ßv, X anXn = Xßvljv

Any — ccnßvKsv hi)»

ÔflV

n (sv hi) (Sp tu) ßv

—' S—tn

The transformation to principal axes takes the form

X Ann'^n^n' — Xs^y^',

s=sv

______ ßv______  
v (sr tn) (ip t/n)

7

F(s) =
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The characteristic equation can be written F(s) = 0, and the 
normalization constants are given by ß~2 = —F'^Sp).

A 2. For the transformation of (11) one has to take tn = v2 = 
(na/L)2 and an = enm^k If for s we now write Á'2, the charac
teristic equation becomes (using (9))

The latter form of the
possible to put ôn = 1 

equations has been chosen so that it is 
(transition to the point-electron). Subse

quently, the series can be summed:
oc

4 e2 \~ 1m= 31**2,
n = l v ' 7

and for large L this reduces to (15).
With the abbreviations Ln and according to (14) one finds 

from (A 4)

The transformation (12) is according to (A 3)

2 vn sin r¡n. 2 vnkn. cos 

x\/LLn> (k2n.—v2n)
(A 8)

Finally, using (A 3), (A 6) and (A 7) one finds

which completes the proof of (13).
With k = ik' the characteristic equation (15) becomes Tub 

Lk' — k'/n, and this equation has one positive root very near to 
x. This eigenvalue ik' & in will be denoted by k*  and the cor
responding is defined by = Lk*  ph iLn. Hence

cos œ Csh Ln ph -^eL*, L*  = L — cos2^/x æ —e~L'ijAn. (A 9) 
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In all summations over n this anomalous term must be included, 
i. e. n also takes the value *.

A 3. For the transformation of (21) one has to replace tn 
and an by k2 and Kdv, the subscript v being used to remind that 
the value v = 0 is included. Writing for the eigenvalue para
meter co2, one finds the characteristic equation

In order to evaluate this sum we now construct an analytic 
function of co with the same poles and residues.

First we define the function T](k) by

cos T] (k) = X

|/z2+F’
sin TjÇk) =

so that Tj(kn) — T]n. Then the equation (15) for the kn is equivalent 
to tan (Lk — ??(£)} = 0 and one can easily verify

---- 00

COS2 >?n 
Ln An)

cos2 (co) XCO  

tan {L co — (co)} x2 + co2 (All)

The second term is required for subtracting the additional poles 
due to cos2 TjÇco). After some calculations one finds from (A 10) 
and (All) the equation (23).

Furthermore, from (A4) with the aid of (All) is found after 
laborious calculations

ßv = |/ 2 *l Lv (KImv) sin2 ’ (A 12)
where

L'v — L — sin cos ^v/mv + 2 xK2 sin2 Cv/^v = L— (d£/d<*>)æ v-

Substituting all this in (A 3) one finds the transformation matrix 
(now denoted by Y)
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2x/v2 sin ?yn sin 1
(n^O)

l'^Lr K
(A13)

Again, putting co = ico' in (23) one finds an imaginary root 
co# z’x, which is not quite the same as the root k*  for the free 
electron. The values of Yn:i. and Yo*  can be found from (A 13) 
by taking, like in (A 9),

£# = z'Lx, L*  = —eL*/4x.

The values of Y* v are found by means of (A 9).
When the second procedure is applied (in 18), the sum in 

(A 10) does not contain the term with n = *.  The corresponding 
terms in (All) have to be subtracted on the right and the result 
is that the sign of the last term in (A 11) is reversed. One then 
finds (27) instead of (23), and both (A 12) and (A 13) hold, 
provided L' is replaced by

Here the derivative has to be computed from (27), but its explicit 
expression is rather complicated.

A 4. In this section it will be shown that the transformation 
(12) is indeed a transformation to phase-shifted light quanta, as 
stated in 13. For this purpose consider the boundary problem 
given by

(r) + Pzz(r) = 0, p(L) = 0, z/(0) + xz>(0) = 0.

The solution is trivial and furnishes the normalized eigenfunctions

yn(O = | 2/Ln sin (knr — 7?n), (A 14)

where kn, r¡n, Ln are again given by (15) and (14). In particular, 
for x = oc one finds the orthogonal functions

“nO) = |/2/L sin vnr.
Dan.Mat.Fys.Medd. 26, no.15. 5
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Both orthogonal sets are connected by an orthogonal transfor
mation 7

“n (r) = X Bnn' “n' (0 » Bnn’ = \ "n (0 Un' (0 dr • 
Jo

The integration can readily be performed, and I3nn> turns out to 
be equal to Xnn> given by (A 8). This proves (18).

A 5. When the equation for the phase is more complicated, 
as e. g. in (23), there is no corresponding boundary problem. 
Nevertheless, if a phase function £(a>) is given by

tan £(co) = (co/x) 0(co),

we may consider the set of functions

wn(r) = |/2/^n sin (Wnr — Cn),

where = t(con), and con is determined by the condition 
u;n(L) = 0. For convenience, a factor with

¿á = L — Çd^dco}^ (A 15)

has been added, but that does not mean that the functions are 
normalized. They can be expressed in the complete orthogonal 
set pn(r):

nn' “n' Cr') > ^nn’ \ “’n O') “n'
Jo

and one finds readily

c = 2x sin£n sinrjn> Í _ 1 ]
’|/z^ Í

For the harmonic oscillator 0(co) = co2/(co2— A2) and

Cvn = (J'nieiy) 1 zip = (co,,/Á’n) ( 1 nv — |/2 x/Ln (sin '¡fa/kn) 1 Or/ » (A 17) 

according to (A 13)*  .
In order to prove (26) we deduce from (25), using successively 

(A 14), (A 17) and (A 16),
*) The same equation holds in the second procedure, where 0 is determined 

by (27), provided the derivative in (A 15) is accordingly computed from (27).

(r) dr, (A 16)“’M =EC
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A' = -Se|/3/2Z'ní,{pn(r)/^r}yn>,P;

= C |/ 3/2 27np {Pn(r)/Wj>ry CpnPi>—

— Se ¿’m, |/3 x/Ln {vn(r) sin rjn/knr} YOvP'v

= —Se |/3/2 27r {zz;r(r)/corr} Py —

—Se ¿’n j/3 x/Ln {vn(r) sin r¡n/knr) Sv Yqv P'v .

(A 18)

On the other hand

P = p' = ePom*  = e|/^ZyOvPv

and with the aid of the relation

2? |/2/Ln {vn (r) sin yn/k^} = 1/x, (A 19)

which will be proved presently, (A 18) reduces to (26).

A 6. In this section an identical relation between the ivn(r) 
will be derived, which proves that they are not independent. Let 
0(z) be a one-valued analytic function in the complex z-plane, 
whose only singularities are simple poles and which tends to a 
limit different from zero when |z| tends to infinity. Then

sin {Lz — £ (z)}  « sin Lz 
sin C (z) z ø (z) cos Lz

is also one-valued analytic and its only singularities are the zeros 
&Í of 0. The zeros of G(z) are the characteristic values Mn and 
the values of the derivative in these points are

GXMn') = Ln/sin Lco„,

Ln being defined by (A 15).
If J is a closed path of integration that does not pass through 

any point wn, then

1 sin zx dz sin a>x V sin o>nL sin ton ¿r 
J G(z)(z —co) G (co) ' L'n(a>n — (û)

the sum being extended over all o)n inside J. The integral on the 
left vanishes for J-*-oo,  |.r|<L. Hence, with x = L — r,

5*
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sin Mn L sin wn x 
ljn (w f^n)

the last member being valid if ø is an even function, so that 
œ_n = —œn. Substituting co =

In this way one finds a relation between the wn(r) for each 
zero of 0.

Incidentally the relation (A 19) can be proved on choosing 
0 = 1 (so that con = kn, t,n = rjn, Ln — Ln) and taking in (A 20) 
co = 0 and L very large. Moreover, if in Ibis relation x goes to 
infinity, it becomes

27(2 sin vnr)/Lvn = 1, (A 22)

which proves (17).

A 7. In this section the work of A 1 is reformulated for the 
case of a continuous spectrum. First suppose that the tn are very 
dense on the real axis; introducing functions e(/) and «(/) by

^n+l = e0n)» an = | /e(Jn) & >

we suppose that they vary slowly:

de¡d1,({\, dafdt « a/e.

Then, with xn = x(tn)[ £(Jn) equation (Al) can be written

(s—/)x(/) = «(/)$«(/').r(/')c//' = «(/)•/?.

The formal solution, given in 27, is

x(0 = «(Í){(S-O_1-AÓ(S-O}^, (A23)

2 being determined by

= 1.
J s— t

(A 24)
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For a justification we consider (A 2) for our nearly continuous 
spectrum.

The (real) roots s are, from a macroscopical point of view, 
continuously distributed, but microscopically the position of each 
root between two successive t’s is determined by the equation 
(A 2). Let s be the root between tm and tm+i, and put s = tm + a, 
0 < (T< £. Then

Í. . VAf 1_________________________1____ '
2 — tn n \tm4- a— tn + e/2 — tn¡

Il is readily seen that the first sum on the right ternis to a principal
value integral

^“7 Ç a(t)2 dt ?a(f)2dt
¡111 +El- ln Jfm+e/2 —f } S—t

which does not depend on the microscopical position of s.
The second sum is convergent, so that the higher terms, with 

I n — in I > N say, may be neglected. The other terms cover an 
interval 2 Ne, which is small for small e, so that a/t may be 
taken constant in it. Hence this sum can be written

9 V7 / 1 1 \ <> 7t 71 / \2 . %
am > - =«m-COt-(J = Jia(s) COt-tf.

——1 \ff — Il E E 2 — HE EE E

— 00 \ '

Since the cotangent can assume all values from —oc to 4-00, 
one can use instead of a the parameter

Z = —tt cot Trcr/e.

The characteristic equation (A 2) for s then takes the form (A 24) 
with Å as eigenvalue parameter to be determined.

The solution (A 23) can now easily be justified in the same way.

Appendix B.

Since we employ an expansion in multipole waves rather than 
in the customary plane waves, the mathematical connection be
tween both pictures has to be established. We shall first derive 
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the relation between the intensity J of the plane wave and the 
outgoing energy I associated with its electric dipole component. 
Nex!t we express the cross-sections in terms of the polarizability 
a and, subsequently, we derive the relation between a and the 
phase shift £. Finally we shall apply the resulting formulae to the 
classical damped harmonic oscillator.

Io. Let a monochromatic plane wave in the z-direction be 
represented by the vector potential

A(0 = (Bl)

The expansion in multipole waves can be written

eei£üz = rte&taAto(r,d,f),

where the subscript I refers to the order of the multipole and u 
distinguishes the different waves of the same order. Since the 
multipole waves are orthogonal on the surface of a sphere with 
large radius r, one finds the coefficients from

b,u J A,„ (/,#,?>)*  dQ = $ eA„,(r.ô,ç>) e'“r€“#<Zß. (B 2)

We are only interested in the electric dipole wave: 1=1, 
u = x,y,z; in this case we have

Ålu(r ,<p) = 2eu sin cor/r. (B 3)

Performing the elementary integrations in (B 2) one finds 
= (3/2 co) (e"e) so that the expansion takes the form

gîeefco(2-0 = Mre~i(tít + • • •. (B 4)
2 cor 7

Now the plane wave (Bl) has the intensity J = co2/8 n, 
whereas the outgoing (and also the ingoing) energy per unit time 
in (B 3) is co2/12. Thus from (B 4) follows

J = (2 co2/3 %) I.

2°. Suppose there is a scattering centre at the origin which 
has an induced dipole moment M proportional to the field strength 
E of the incident plane wave:
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The work done by the field force per unit time is

EM = 1 im (B.M*  - E<*  M„) = 1 <u | Eo |2 3«. (B6)

On the other hand, the dipole emits, according to a well-known 
calculation51, per unit time the energy

I = (co4/3) I Mo I2 = (co4/3) I a I21 Eo I2. (B 7)

Since J = I Eo |2/8 n, (B 6) and (B 7) give respectively

crt = 4 Ticosa, as = (8 tcco4/3) | a |2. (B 8)

As the field is now singular in the origin, its dipole component 
will not only contain the regular dipole term sin cor/r, but also 
cos air/r. Therefore it can be written

A(0
sin (cor—£)

<RXC---- --------—e l.r
(B 9)

The singularity caused by the dipole moment M has, according 
to classical formulae, the form

A = ÏÏÎÏ — i co Moe~ ia)t/r -f- finite terms,

so that one finds
— C sin C = — z coMo. (B 10)

On the other hand, the constants C and £ have to be adjusted 
so that (B 9) contains the same ingoing dipole wave as (B 4):

Ce1^ = 3 e/2 co. (B 11)

Combining (B 5), (B 10), and (B 11) one finds

« = ^-s(l-e-2,î). (B 12)

From this, together with (B 8) follow52
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s

6¿r i tan C 
co2 1 + í tan £ ’

3 71
2 co2

2i£|2 tant 2
1 ” CO2

1 + i tan Co

1 — i tan C 2\
1 + i tan £ )

3o. For a damped harmonic oscillator the equation of motion is 

il+yÉ + Æ2R = (e/m)31Eoe-^\ (B 13)

The damping term y is the sum of the radiation damping and 
the damping due to energy dissipation by other processes53 

y = y° y't y° = 2 C2iO2/3 111 = CO2/x.

From (B 13) follows in the ordinary way for the polarizability 

a = (e2/m) (K2 — co2 — iya))1,

and the phase shift can then be found from (B 12):

tan “ co^K2 +Ty'oj ’

This formula takes the form (80) in the neighbourhood of the 
resonance frequency. The expressions one obtains for the cross
sections are also similar to those in 41.

Appendix C.

Here we shall derive a general relation between matrix ele
ments of the unperturbed atom, which has been used several 
times to prove the equivalence of the results obtained by Kramers 
Hamiltonian with the usual results. If H is the Hamiltonian 
P2/2 m + V (R) and Í2 an arbitrary constant, one finds successively

P„(H-Q)~'PU =
= P^H-Q)-1 P„-PvPm)

= ■ - WA-+ (H-ii)P„(H-Qr' Pw(H-Q)

-Upj’^h-q)+(H-ß) p„zq.



Nr. 15 73

In the first term on the right one can write

p P  p p — p p  p p  f p p 1x üx lö * V*  W * V1 W x IV*  V I x V > x IV J

= p p _ p p — id d V* V*  IV x IV V VVIV r • 

Hence, the eigenstates being labelled by N,M,J,

is found to be equal to 

’2’j(í:J-£N){<N|P„|J><J|P11,|M>-<N|P,„|j><j|P„|M>}+|<N|0„a„V|M>

-------------------------------------------------<N|/>„|.1><J|p„,|m>

This identity will now be specialized in various ways.
Io. On taking N = M = 0, v = w, and Q = Eo + co and 

Q = Eq — a) respectively, one obtains two identities, which added 
together yield the equality used in (49).

2°. On taking M = N, v = w, and Q = EN — k one finds 
the equivalence of (74) and (79). If all three directions in space 
are taken into account, one has to sum over p, which amounts 
to writing in (79) the vector P.

3°. In the same way, by writing N = N,/ll and M = N,p', 
taking £ = En—k and summing over v = w, one finds (98).

4°. Finally write the identity with Q = EM + coM, and also 
with Q = En — coM and v and w interchanged; the sum of both 
equalities thus obtained is
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Adding to this the identity

0 = <N I P„PW-P„P„I M> = (<N I P„ I J> <J I I M> -<N I P„I J> <JI P. I M>}

after multiplying with —--(2 + AMN) » one gets on the right
hand side

M M (mm + Kmn) |.»<j|p„|m>
JAf wAi

<n|pw|j><j|p„|m>]
KjN + M M

(Cl)

This includes (60)—and also (49)—as special cases.
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